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Preface

We are proud to present the proceedings of the seventh biennial conference in the
Intelligent Data Analysis series. The conference took place in Ljubljana, Slove-
nia, September 6-8, 2007. IDA continues to expand its scope, quality and size.
It started as a small side-symposium as part of a larger conference in 1995 in
Baden-Baden (Germany). It quickly attracted more interest in both submissions
and attendance as it moved to London (1997) and then Amsterdam (1999). The
next three meetings were held in Lisbon (2001), Berlin (2003) and then Madrid
in 2005. The improving quality of the submissions has enabled the organizers
to assemble programs of ever-increasing consistency and quality. This year we
made a rigorous selection of 33 papers out of almost 100 submissions. The result-
ing oral presentations were then scheduled in a single-track, two-and-a-half-day
conference program, summarized in the book that you have before you.

In accordance with the stated IDA goal of “bringing together researchers
from diverse disciplines,” we believe we have achieved an excellent balance of
presentations from the more theoretical – both statistical and machine learning –
to the more application-oriented areas that illustrate how these techniques can
be used in practice. For example, the proceedings include papers with theoretical
contributions dealing with statistical approaches to sequence alignment as well
as papers addressing practical problems in the areas of text classification and
medical data analysis. It is reassuring to see that IDA continues to bring such
diverse areas together, thus helping to cross-fertilize these fields.

Organizing a conference such as IDA is not possible without the assistance
and support of many individuals. We are particularly grateful to Tina Anžič and
Heather Fyson, who worked tirelessly behind the scenes. Ingrid Fischer worked
with Richard van de Stadt to make sure the proceedings were finished flawlessly
in time for the meeting. But, crucially, putting together a program of assured
quality was only possible through the detailed refereeing of the members of the
Program Committee, many of whom also submitted papers and attended the
conference.

September 2007 Michael R. Berthold
John Shawe-Taylor

Nada Lavrač
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José-Maria Peña, Technical University of Madrid, Spain
Tuan Pham, James Cook University, Australia
Marco Ramoni, Harvard Medical School, United States
Celine Robardet, LIRIS/INSA-Lyon, France
Vı́ctor Robles Forcada, Universidad Politécnica de Madrid, Spain
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Two Bagging Algorithms with Coupled Learners to Encourage
Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
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Trees

Conditional Classification Trees Using Instrumental Variables . . . . . . . . . . 163
Valerio A. Tutore, Roberta Siciliano, and Massimo Aria

Robust Tree-Based Incremental Imputation Method for Data Fusion . . . . 174
Antonio D’Ambrosio, Massimo Aria, and Roberta Siciliano

Sequence/ Time Series Analysis

Making Time: Pseudo Time-Series for the Temporal Analysis of Cross
Section Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Emma Peeling and Allan Tucker

Recurrent Predictive Models for Sequence Segmentation . . . . . . . . . . . . . . 195
Saara Hyvönen, Aristides Gionis, and Heikki Mannila

Sequence Classification Using Statistical Pattern Recognition . . . . . . . . . . 207
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Compact and Understandable Descriptions of

Mixtures of Bernoulli Distributions

Jaakko Hollmén and Jarkko Tikka

Helsinki Institute of Information Technology – HIIT
Helsinki University of Technology, Laboratory of Computer and

Information Science, P.O. Box 5400, FI-02015 TKK, Espoo, Finland
Jaakko.Hollmen@tkk.fi, tikka@mail.cis.hut.fi

Abstract. Finite mixture models can be used in estimating complex, un-
known probability distributions and also in clustering data. The param-
eters of the models form a complex representation and are not suitable
for interpretation purposes as such. In this paper, we present a methodol-
ogy to describe the finite mixture of multivariate Bernoulli distributions
with a compact and understandable description. First, we cluster the data
with the mixture model and subsequently extract the maximal frequent
itemsets from the cluster-specific data sets. The mixture model is used to
model the data set globally and the frequent itemsets model the marginal
distributions of the partitioned data locally. We present the results in un-
derstandable terms that reflect the domain properties of the data. In our
application of analyzing DNA copy number amplifications, the descrip-
tions of amplification patterns are represented in nomenclature used in
literature to report amplification patterns and generally used by domain
experts in biology and medicine.

1 Introduction

In data analysis, the model should absorb the essentials about the data measured
from a phenomenon and abstract away the irrelevant details about a particular
data set. Parsimonious representations aim at particularly compact and simpli-
fied models. These kind of models offer an appealing basis for understanding
and describing a phenomenon of interest. Previously, we have investigated parsi-
monious model representations in ecology [12], where we predicted nutrient con-
centrations in coniferous trees with a sparse regression methodology. In a time
series prediction context, we have proposed a fast input selection method for
long-term prediction [14] using a filter strategy. This strategy selects a possibly
non-contiguous set of autoregressive variables with linear techniques and builds
more complex non-linear prediction models using only the selected variables. In
our experience, the parsimonious models are highly desired by domain experts,
for instance, in biology, medicine, and ecology. In the models mentioned above,
we have included roughly ten percent of the variables (in fact, parameters) com-
pared to the models represented by all the parameters (full models). The sparse
models still produce as accurate predictions as the full models. Another line of

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 J. Hollmén and J. Tikka

research where an attempt is made to concisely describe a data set is reported in
[15]. We have presented a tool for automatically generating data survey reports
for the modeler to be aware of the properties of the data set. While technically
slightly different, the spirit still remains the same as in the current work: the
focus is on describing the cluster structure and the contents of the clusters. The
aim of the current paper is to present a way to summarize a finite mixture model
for 0-1 data concisely and with a simple, domain-compatible representation.

Our research has been motivated by work in analyzing DNA copy number
amplifications represented as 0-1 data by profiling [9] and by mixture model-
ing [13]. The mixture modeling approach offers an elegant way to model DNA
amplification patterns in a probabilistic framework. However, the mixture mod-
els are summarized by arrays of numerical probability values that are hard to
grasp. Therefore, we investigate how to describe the essential properties of the
mixture models through the parameters of the models, or alternatively through
the clustered data sets. Our proposed solution is based on the maximal frequent
itemsets which are extracted from the clustered data sets. The descriptions are
represented in the style of the descriptions used in literature to report amplifi-
cation patterns and generally used by domain experts.

The rest of the paper is organized as follows: Sect. 2 describes the DNA copy
number amplification data and our previous research in this context. Sect. 3
describes mixture models in the analysis of 0-1 data and the partitioning scheme
for dividing the data in to cluster-specific data sets. The main topic of the
paper — how to describe the mixture model for 0-1 data in a compact and
understandable fashion — is explained in Sect. 4. Experiments are reported
in Sect. 5 and the paper is summarized in Sect. 6. The nomenclature for the
chromosome regions, which is used in the experimental part of the paper, is
described in Appendix A.

2 DNA Copy Number Amplification Database

We have analyzed the database of DNA copy number amplifications collected with
a bibliomics survey from 838 journal articles covering a publication period of ten
years from 1992 until 2002 (for details, see [9]). DNA copy number amplifications
are localized chromosomalaberrations that increase the number of copies of a chro-
mosomal region from two to at least five. In the database, the DNA copy number
amplifications are recorded for N = 4590 cancer patients in d = 393 chromosomal
regions covering the whole human genome, and the observed data are the presence
(xij = 1) or the absence (xij = 0) of DNA copy number amplifications for the pa-
tient i in the chromosomal region j, where i = 1, . . . , 4590 and j = 1, . . . , 393. For
the case including only chromosome 1 presented later in the paper, the dimen-
sions of the data are N = 446 and d = 28. The nomenclature for the chromosome
regions used later in this paper is briefly described in Appendix A. In our previ-
ous work, we have analyzed a large 0-1 database of DNA copy number amplifi-
cation patterns in human neoplasms [9]. We characterized the genome-wide data
with cancer-specific amplification profiles with a probabilistic interpretation and
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clustered the data with hierarchical clustering. Amplification-based clustering
demonstrated that cancers with similar etiology, cell-of-origin or topographical
location have a tendency to obtain convergent amplification profiles [9]. Further-
more, we applied independent component analysis (ICA) [7] to identify amplifica-
tion hot spots, which are sparse, genome-wide factors defining statistically
independent amplification sites in the data.

3 Mixture Models of DNA Copy Number Amplifications

Finite mixture models are widely used in data analysis and pattern recognition
due to their flexibility and solid theoretical basis. The finite mixture model is
parameterized by the number of components J and their corresponding mixing
proportions πj with non-negativity constraints πj ≥ 0 and necessary constraint
∑J

j=1 πj = 1 so that the distribution integrates to one. Each of the component
distributions is parameterized by a vector of parameters θj = (θj1, . . . , θjd). Con-
sidering the class of mixture models with J Bernoulli distribution components,
each with dimensionality d, the model is summarized with J +J×d = J×(1+d)
parameters and the appropriate conditional independence and independence as-
sumptions. The probability of the data vector x = (x1, . . . , xd) can be calculated
as

P (x) =
J∑

j=1

πj P (x | θj) =
J∑

j=1

πj

d∏

i=1

θxi

ji (1− θji)1−xi . (1)

Learning from the data is most conventionally done in the framework of maxi-
mum likelihood estimation using the iterative Expectation-Maximization (EM)
algorithm [3,16].

Recently, we modeled a refined version of the DNA copy number amplification
database containing only malignant tumors, or cancers, and modeled the DNA
copy number amplification patterns with finite mixtures of Bernoulli distribu-
tions in a chromosome-specific manner [13]. Model selection was performed for
each chromosome in order to select an appropriate number of component distri-
butions using a 5-fold cross-validation procedure repeated ten times. As a result,
we got 23 mixture models for chromosomes 1, 2, . . . , 22, X with altogether 111
component distributions. The Y chromosome was left out of the analysis due
to lack of data. In our example model for the DNA copy number amplifications
in chromosome 1, we have 6 component distributions and the data dimension
d = 28, so we have 6×(1+28) = 174 parameters. The resulting model (see Fig. 1)
is determined in terms of the maximum likelihood estimates of the parameters,
which might be hard to interpret since the parameters of the model may have
different roles and do not obey any simple geometric similarity observable by the
human eye. The subsequent problem is to consider the result set and think of
the best possible way to convey the model to experts in biology and medicine.
The details of the mixture modeling is reported in [13]. Here, we concentrate
on presenting the models with a compact and understandable description. The
description also has a direct relevance to diagnostic patterns of amplification
that can be used by experts in their research or clinical work.
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Fig. 1. Parameters θji, j = 1, . . . , 6, i = 1, . . . , 28 of the final mixture model. Each row
represent the parameters of the corresponding component. The mixture proportions
are π1 = 0.07, π2 = 0.24, π3 = 0.21, π4 = 0.20, π5 = 0.19, and π6 = 0.09. The names
of the bands of the chromosome 1 (corresponding to 28 variables) are shown under
the x-axis. For a brief explanation of the naming scheme of chromosomal regions, see
Appendix A.

1p36.3

1p36.2

1p36.1

1p35

1p34.3

1p34.2

1p34.1

1p33

1p32

1p31

1p22

1p21

1p13

1p12

1p11

1q11

1q12

1q21

1q22

1q23

1q24

1q25

1q31

1q32

1q41

1q42

1q43

1q44
C

om
po

ne
nt

j

1

2

3

4

5

6

Fig. 2. The clustered DNA copy number amplification data is illustrated. Each horizon-
tal line is one data vector; black areas mark ones and the white areas are zeroes in the
data. The grey horizontal lines mark the partitions determined by the six probabilistic
amplification patterns in the mixture model (see Fig. 1). The data in the clusters can
easily be characterized, underlying the goodness of the clustering model and enabling
compact and understandable cluster-specific descriptions of the model and the data.
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The finite mixture model can be used in clustering by associating a cluster
with each of the component distributions. Following the probabilistic approach,
we can partition the original data set by allocating each data vector in to a cluster
with the maximum posterior probability given the data vector. This maximum
posterior allocation can be written with the help of Bayes’s theorem as

P (j | x) =
P (j)P (x | j)

P (x)
=

P (j)P (x | j)
∑J

j′ =1 P (j′)P (x | j′)
. (2)

Since the denominator in Eq. 2 is constant for all component distributions j, it
is sufficient to partition the data vector x in to the cluster j∗ using

j∗ = argmax
j

P (j)P (x | j) = argmax
j

πj

d∏

i=1

θxi

ji (1− θji)1−xi . (3)

The clustering of the data set in to J = 6 partitions is illustrated in Fig. 2.
In the following, we will consider the analysis of the clustered data.

4 Compact Description of the Mixture Models

We consider two alternative approaches to describe the multivariate Bernoulli
distributions for modeling 0-1 data. The first approach is based on describing
the model directly through the parameters of the mixture model (Sect. 4.1 and
Sect. 4.2). The second approach to describe the model is with the help of the
cluster-specific data sets that are achieved when the original data have been
partitioned (Sect. 4.3). Our methodological contributions concentrate on the
latter (describing the model though the data), but in the following, we also
explore ways to characterize the model in terms of the parameters. It is also
instructive to see how the methods are related to each other.

4.1 Modes of the Component Distributions

The simplest of all descriptions (and also the most compact) is to describe
the model in terms of the modes of the respective component distributions.
By definition, this only highlights the most probable elements of the data vec-
tors described by the component distributions of the mixture model. If local
chromosomal areas are sought for diagnostic purposes, this may be an ideal
choice. However, this might suffer from the extremely simplified representation
that is not faithful to the original data. For instance, if there are two distinct
large probabilities, only one will be represented by the mode. For instance,
component 2 of our example model in Fig. 1 can hardly be summarized by a
mode, and neither can component 3, which has a large contiguous range of high
probabilities.
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4.2 Hypothetical Mean Organism

In bacteriology (see [5] and references), biochemical profiles of bacterial strain
have been summarized by means of replacing probabilities θij with their quan-
tized counterparts aij as

aij =
{

1 if 1/2 ≤ θij ≤ 1,
0 if 0 ≤ θij < 1/2.

The profiles formed by the aij are called hypothetical mean organisms and
abbreviated HMO. They represent the vectors of probabilities with their most
likely realizations by quantizing each of the parameters to the most likely value of
the each component of θj (either one or zero). One noteworthy aspect is that this
could in fact be a non-existent case in the data set and more importantly, could
be an impossible real-world situation. Nonetheless, it describes one realization
that characterizes the parameters with the minimum quantization error.

4.3 Maximal Frequent Itemsets from Clustered Data

A conceptually different approach to describe the model is through the data
sets that are created by partitioning the data by the maximum posterior rule in
the hard clustering way (see Eq. 3). Then, any description of the cluster (and
therefore the component distribution of that cluster), is calculated as a function
of the clustered data sets. As mentioned before, the goal of the description is to be
compact and understandable, so that domain experts can take full advantage of
the modeling effort. Since our data is 0-1 data, any description must be specific to
the nature of data. Frequent itemsets are one such description. Frequent itemsets
are disjunctions of a set of attributes that co-occur in the data set.

As a typical example, imagine a market basket with possible items X =
{milk, butter, bread}. If, for instance milk and butter, occur together in bas-
kets with frequency of over 70 percent, we say that the {milk, butter} itemset
is 0.7-frequent. The Apriori algorithm for calculating the frequent itemsets is
one of the classical algorithms [1,8] in data mining. However, if a market basket
with items {milk, butter, bread} is a frequent itemset with our pre-specified
frequency threshold, all of its subsets are also frequent. This is the so-called
anti-monotonicity property of frequent itemsets. For description purposes, this
is somewhat wasteful, and certainly not compact. Instead, we turn our attention
to maximal frequent itemsets [2], which are defined to be the largest (in cardi-
nality) frequent itemsets that exceed the threshold. A set of maximal frequent
itemsets is several orders of magnitude smaller than the usual set of frequent
itemsets, making them ideal in providing compact descriptions of the items in the
database [2]. In the above case, only the itemset {milk, butter, bread} would be
reported, and not any of its subsets. We have used an algorithm for finding max-
imal frequent itemsets called MAFIA [2]. The algorithm uses a search strategy
that integrates a depth-first traversal of the itemset lattice with effective prun-
ing mechanisms and it is especially efficient when the itemsets in the database
are very long [2]. The need for mining maximal frequent itemsets becomes clear
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when we look at the results, which are long indeed, and impractical to mine
with the Apriori algorithm [1,8]. In our experiments, we have chosen to use the
frequency threshold σ = 0.5, since then the extracted (maximal) frequent item-
set would be present in the majority of cases in the cluster data. This could be
further motivated by some majority voting protocol.

Previously, we have used the mixture of Bernoulli distributions in clustering 0-
1 data in order to derive frequent itemsets from the cluster-specific data sets [6].
We investigated whether the frequent itemsets extracted in the clusters would be
any different from the ones extracted globally. First, we clustered the data with
a mixture of multivariate Bernoulli distributions and subsequently extracted
frequent itemsets from the cluster-specific data sets. We introduced an L1-norm
based distance measure between sets of frequent itemsets and concluded that
the frequent itemsets are markedly different from those extracted from the data
set globally. On the basis of this previous work, we can expect different frequent
itemsets to emerge from local, cluster-specific data sets and for them to describe
the contents of the cluster more accurately. Frequent itemsets approximate in
essence the marginal distribution of data, but can be also used as a basis in
estimation of the joint distribution with the principle of maximum entropy [10,6].

The novelty in this paper compared to our previous work [6] is the real ap-
plication that we are tackling, and we are trying to extract a compact and
understandable description of the phenomenon. Furthermore, we are extract-
ing descriptions of one model selected through a model selection procedure and
not quantifying the differences over a range of models. Technically, we revert to
maximal frequent itemsets and the translated descriptions based on those.

5 Experiments

We now describe the experimental work in training the mixture models from
data and extracting maximal frequent itemsets from the cluster-specific data
sets. The compact and understandable descriptions are based on the maximal
frequent itemsets. The descriptions are presented in the original naming scheme
for chromosomal regions. This nomenclature [11] is presented briefly in Appendix
A. In our example chromosome 1, the chromosomal regions are coded with 28
regions based on the banding structure. The list of regions is: 1p36.3, 1p36.2,
1p36.1, 1p35, 1p34.3, 1p34.2, 1p34.1, 1p33, 1p32, 1p31, 1p22, 1p21, 1p13,
1p12, 1p11, 1q11, 1q12, 1q21, 1q22, 1q23, 1q24, 1q25, 1q31, 1q32, 1q41, 1q42,
1q43, 1q44. If we have an amplification of the three first chromosomal regions
1p36.3, 1p36.2, and 1p36.1 (denoted as a range 1p36.1–1p36.3), the corre-
sponding data vector would be x = (1, 1, 1, 0, . . . , 0).

During the analysis of all chromosomes, the model selection procedure was
used to select an appropriate complexity of the mixture model by varying the
number of component distributions from J = 2, . . . , 20. We trained 50 models by
repeating 5-fold cross-validation ten times and selecting the model complexity
with the largest validation log-likelihood. In one chromosome, this was seen
to result in a model in which several component distributions were modeling
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Table 1. Comparison of the different descriptions of the mixture of multivariate
Bernoulli distributions for the chromosome 1 example. The parameters of the model
are depicted in Fig. 1 and the clustered data in Fig. 2. The hypothetical mean organ-
isms (HMO) are expressed in terms of the quantized probabilities aij . The modes of
the component distributions are only given in cases when there is a clear single peak in
the component distribution. Our compact descriptions (in the last column) are sum-
marized as ranges from the contiguous maximal frequent itemsets extracted from the
clustered data sets. The HMOs and our compact descriptions happen to describe the
same chromosomal regions, although they are created using different paths.

j HMO mode description based on itemsets

1 0000000000000000000000011111 1q42 1q32–1q44

2 0000000000000000000000000000 not given none

3 0000000000000001111111111111 not given 1q11–1q44

4 0000000000000000011111000000 1q23 1q21–1q25

5 0000000000000000011100000000 1q21 1q21–1q23

6 0001111110000000000000000000 1p34.3 1p35–1p32

essentially the same data. In this case, a simpler model was selected by hand
based on a hump of the validation likelihood. In all other chromosomes, a model
selection procedure was followed.

5.1 Characterization of the Patterns

Repeating our proposed procedure for all chromosomes (except chromosome Y,
which was discarded due to a low number of DNA copy number amplifications),
we get in total 140 amplification patterns described by the maximal frequent
itemsets with the frequency threshold σ = 0.5. The amplification patterns span
a total of 337 chromosomal bands with some overlap between them. It is possible
to have many itemsets for one component distribution; typically, they would be
overlapping. The descriptions for the chromosome 1 example are listed in Table 1.
To summarize the length distribution of all the itemsets, we extracted the fol-
lowing statistics: the average number of items in the itemsets is 5.1 and the
median is 3. The 10th and 90th percentiles of the number of items are 1 and 12,
respectively. The maximum number of items is 27. The large size of the indi-
vidual itemsets underlines the impossibility of extracting frequent itemsets from
the cluster-specific data: the number of all frequent itemsets (all subsets of the
maximal frequent itemsets) would be about 146 million and would not be of any
use in describing the models.

The mixture models seem to offer a nice way to model the domain with a
probabilistic approach and with an excellent generalization ability, which is the
ability to describe the general behavior of the amplification patterns. One charac-
teristic of the identified models is their contiguous, smooth nature, which makes
it very plausible for them to occur in nature. A surprising finding about the de-
scriptions is that most of them describe contiguous chromosomal regions, that is,
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spatially connected areas of the chromosome, although the extraction happens
independently for the individual items. As the DNA copy number amplifications
are expected to occur in the spatial manner [9], this speaks for the good quality
of both the mixture model and the extracted descriptions.

As a reference, we extracted maximal frequent itemsets with a frequency
threshold σ = 0.5 from all the data from chromosome 1 and got the following
two itemsets: {1q21, 1q22} and {1q22, 1q23}. Another comparison would be to
extract maximal frequent itemsets with σ = 0.5/6, the number 6 being the opti-
mal number of clusters found with the aid of the model selection procedure. The
resulting collection of itemsets was {1p31}, {1p22}, {1p36.1, 1p36.2, 1p36.3},
three overlapping itemsets with three items between 1p35 and 1p32, and a long
itemset covering the whole 1q-arm. Two findings are striking: some spurious
results emerge (1p36.1–1p36.3) and some results (1q-arm) shadow other inter-
esting results found through partitioning of the data.

Another way to investigate the nature of the patterns is to compare them to
some external data. One such data set that has close connections to DNA copy
number amplifications is the fragile sites, which are discussed in more detail in
our previous work [9]. There are 117 listed fragile sites in the genome (excluding
the Y chromosome), of which 104 fragile sites map to our defined amplification
patterns and 65 map to the ends of the amplification patterns. We would be
interested to know if there is an unexpectedly large number of fragile sites in the
ends of our amplification patterns, since this would indicate a possible explana-
tion for DNA breakage associated with the amplification. We have compared the
frequency of fragile sites in the ends of the amplification patterns and compared
it with the frequency of fragile sites inside the patterns. A hypothesis test was
executed with the help of a permutation test [4]. The frequency of fragile sites in
the end regions is 0.3693 and inside the patterns it is 0.3086. Running the per-
mutation test with 10000 repetitions, essentially sampling from the distribution
of the null hypothesis by randomly picking 104 sites from the set of all possible
sites, mapping them to the amplification patterns and calculating the frequency
of border patterns and inside patterns, we get the differences for the random
placements for the fragile sites. The p-value is calculated as a tail integral of the
empirical distribution where the frequency of samples exceeds the true differ-
ence between the frequencies (one-tailed test). The resulting p-value is 0.0069,
implying statistical significance of the findings. In absolute terms, the difference
between the frequencies may not seem that large, but the relative difference is
substantial. Thus, we claim scientifically relevant findings, as well.

6 Summary and Conclusions

Finite mixture models are a probabilistically sound and elegant way to model
data, but can be hard to understand and describe compactly. In this paper, we
have presented a way to describe the component distributions of the mixture
models by describing the underlying cluster-specific data in terms of maximal
frequent itemsets. The mixture model is used to model the whole data set as
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a sum distribution in the global fashion and the frequent itemsets model the
marginal distributions of the partitioned data in a local fashion; partitions coin-
cide with the underlying structure of the data. In our case study in the analysis of
DNA copy number amplification data, the cluster structure is well identified and
the extracted maximal frequent itemsets summarize the marginal distributions
in the clusters compactly. The descriptions are presented using the terminol-
ogy used in literature, providing a compact and understandable summary of the
models.
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A Nomenclature for the Chromosomal Regions

The naming scheme for chromosomal regions will be briefly presented in order to
understand the proposed description scheme of mixture models for 0-1 data in
our case of DNA copy number amplifications. In essence, the terminology is used
by domain experts in literature when addressing chromosomal regions. Idiograms
of G-banding patterns for normal human chromosomes at five different levels of
resolution are presented in [11].

Using the resolution of the data used in this paper, the whole human genome is
divided in to 393 chromosomal regions, each with its own systematic name. The
example chromosome, chromosome 1, is divided in to 28 regions. The nomen-
clature follows an irregular, hierarchical naming scheme, where each region may
(or may not) be divided in to smaller subregions. The whole chromosome is
denoted by 1, which consists of two chromosome arms, the shorter arm named
1p and the longer one named 1q. The next levels will add numbers subsequent
to 1p and 1q, as for instance in 1q12. The name 1q12 tells us that the region
belongs to chromosome 1, arm q, and region 12. The 1q12 is not divided any fur-
ther in our resolution. Another example is the regions 1q21.1, 1q21.2, 1q21.3,
which are names of regions on a finer scale and where the part after the decimal
period denotes sub-regions of the chromosome region 1q21. Which regions are
and which are not divided to finer subparts is determined by the resolution of
the naming scheme and the properties of the genome. Chromosomal regions are
often expressed as continuous ranges as for instance 1q21–1q23.

The whole list of regions in the chromosome 1 is as follows: 1p36.3, 1p36.2,
1p36.1, 1p35, 1p34.3, 1p34.2, 1p34.1, 1p33, 1p32, 1p31, 1p22, 1p21, 1p13,
1p12, 1p11, 1q11, 1q12, 1q21, 1q22, 1q23, 1q24, 1q25, 1q31, 1q32, 1q41, 1q42,
1q43, 1q44. The DNA copy number amplification data expressed in terms of
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chromosomal regions can be transformed to 0-1 data according to the am-
plification status of the corresponding regions x = (x1, x2, x3, . . . , x27, x28) =
(x1p36.3, x1p36.2, x1p36.1, . . . , x1q43, x1q44). The 0-1 data is used in the modeling;
the proposed methodology produces compact descriptions of the models in the
terminology originally used by domain experts.
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Abstract. Multiplicative update rules have proven useful in many ar-
eas of machine learning. Simple to implement, guaranteed to converge,
they account in part for the widespread popularity of algorithms such
as nonnegative matrix factorization and Expectation-Maximization. In
this paper, we show how to derive multiplicative updates for problems in
L1-regularized linear and logistic regression. For L1–regularized linear re-
gression, the updates are derived by reformulating the required optimiza-
tion as a problem in nonnegative quadratic programming (NQP). The
dual of this problem, itself an instance of NQP, can also be solved using
multiplicative updates; moreover, the observed duality gap can be used
to bound the error of intermediate solutions. For L1–regularized logistic
regression, we derive similar updates using an iteratively reweighted least
squares approach. We present illustrative experimental results and de-
scribe efficient implementations for large-scale problems of interest (e.g.,
with tens of thousands of examples and over one million features).

1 Introduction

The search for sparse solutions appears as a theme in many seemingly unrelated
areas of statistical learning. These areas include, for example, large margin classi-
fication by support vector machines (SVMs) [16], unsupervised learning by non-
negative matrix factorization (NMF) [8], and linear and logistic regression with
L1–norm regularization [3,6,12,15]. Between the first two of these areas, there
recently emerged an unexpected connection. In particular, it was shown [13]
that the main optimization in SVMs—an instance of nonnegative quadratic pro-
gramming (NQP)—could be solved by a generalization of certain multiplicative
updates proposed for NMF [8].

In this paper, we establish another connection in this framework. Specifically,
we show that the same multiplicative updates developed for SVMs can also be
used for L1–regularized linear and logistic regression. The advantages of multi-
plicative updates for learning sparse representations [5,8] also transfer directly
to this new setting.
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The multiplicative updates that we study have two particularly appealing
features. First, they are very simple to implement, with no tunable parameters or
ad-hoc heuristics needed to ensure convergence. Second, they provide a guarantee
of monotonic convergence, decreasing their loss functions at each iteration.

The transparency and reliability of these updates make them attractive for
many applications in machine learning. In many real-world applications, it is
necessary to modify or monitor the core optimizations; sometimes, they must be
re-implemented on different platforms or distributed across multiple processors.
These needs are not well-served by complicated black-box solvers.

The multiplicative updates we study in this paper have proven useful in many
settings. In their simplest form, originally derived for NMF [8], the updates have
been widely adopted for unsupervised learning and feature extraction. In their
more general form, originally derived for SVMs [14], they have also been applied
to problems in acoustic echo cancellation [10] and astrophysical data analysis [2].
We believe that these multiplicative updates will prove similarly attractive to
many practitioners of L1–regularized regression.

The paper is organized as follows. In section 2, we review the multiplicative
updates proposed by [14] for nonnegative quadratic programming. We also show
how to bound the error of intermediate solutions using ideas from convex duality.
These types of guarantees have not been discussed in earlier work [13] on multi-
plicative updates. In sections 3 and 4, we describe how these updates are used for
linear and logistic regression with L1–norm regularization. These applications of
multiplicative updates to L1–norm regularized prediction also represent a novel
contribution beyond previous work [13]. Finally, in section 5, we highlight several
recent approaches most closely related to our own and conclude by discussing
future directions for research.

2 Background in NQP

The problem of nonnegative quadratic programming (NQP) takes the form:

Minimize f(v) = 1
2v

�Av + b�v
subject to v ≥ 0 .

(1)

The notation v ≥ 0 is used to indicate that all the elements of v are required to
be nonnegative. For simplicity, we assume that the matrix A in eq. (1) is strictly
positive definite, and hence there exists a unique global minimum v∗ ≥ 0 to this
problem. Due to the nonnegativity constraints in eq. (1), its solution cannot be
found in closed form. Thus, an iterative approach is required. Section 2.1 reviews
the multiplicative updates proposed by Sha et al [13,14] for these problems in
NQP. Section 2.2 shows that multiplicative updates can also be used to solve
the Lagrange dual problems, yielding bounds on the error of intermediate solu-
tions. To our knowledge, this aspect of convex duality has not been exploited in
previous work on multiplicative updates.
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2.1 Multiplicative Updates

The multiplicative updates for NQP are written in terms of matrices A+ and
A− that store the positive and negative elements of A. In particular, we define:

A+
ij =

{
Aij if Aij >0,
0 otherwise. A−

ij =
{
|Aij | if Aij < 0,
0 otherwise.

It follows from these definitions that A = A+−A−. The multiplicative updates
for NQP involve matrix-vector products between A+ and A− and the current
estimate v. As shorthand, we define vectors with elements ai = (A+v)i and
ci = (A−v)i. In terms of the vectors a,b, c ∈ �d, the multiplicative updates
take the simple closed form:

vi ←−
[
−bi +

√
b2
i + 4aici

2ai

]

vi . (2)

The updates assume that the vector v is initialized with strictly positive el-
ements. Then, as shown in [13], these updates converge monotonically to the
global minimum of eq. (1), decreasing the loss function at each iteration.

Implementation of the updates is straightforward. In many applications, the
updates can be performed by just a few lines of MATLAB code. Each update
requires two matrix-vector multiplications for A+v and A−v, essentially twice
the computation required to evaluate the gradient. When the matrix A is it-
self nonnegative, eq. (2) reduces to previously derived updates for nonnegative
matrix factorization [8], now widely used for unsupervised learning and feature
extraction.

2.2 Convex Duality

By minimizing the Lagrangian associated with eq. (1), we obtain the Lagrange
dual function [1]:

g(λ) = inf
v∈�d

[
f(v)− λ�v

]
. (3)

The Lagrange dual function can be used to obtain lower bounds on the solution
of eq. (1). In particular, for any nonnegative pair v, λ ≥ 0, we have:

g(λ) = inf
u∈�d

[
f(u)−λ�u

]
≤
[
f(v)−λ�v

]
≤ f(v). (4)

The tightest lower bound in eq. (4) is obtained by maximizing the Lagrange dual
function over λ≥0. For the NQP in eq. (1), assuming the matrix A is invertible,
the Lagrange dual problem is given by:

Maximize g(λ) = − 1
2 (λ−b)�A−1 (λ−b)

subject to λ ≥ 0 .
(5)
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Note that the Lagrange dual problem is also an instance of NQP, whose global
maximum λ∗ ≥ 0 can be computed using multiplicative updates. Finally, we
note that all problems in NQP exhibit strong duality [1], guaranteeing that
g(λ∗) = f(v∗). By solving primal and dual problems in parallel, we can therefore
bound the error of intermediate solutions that are obtained from multiplicative
updates. We will use the observed duality gap [f(v) − g(λ)] for this purpose in
section 3, when we reformulate L1–regularized linear regression as an instance
of NQP. For example, Fig. 1 shows the observed duality gap as a function of the
number of multiplicative updates.

3 L1–Regularized Linear Regression

In this section, we show how to use the multiplicative updates in eq. (2) for the
problem of linear regression with L1–norm regularization [3,15]. The training
data for linear regression consists of labeled examples {(xα, yα)}n

α=1, where xα∈
R

d and yα∈�. The L1–regularized loss is given by:

loss(w) =
1
2n

n∑

α=1

(
yα −w�xα

)2
+ γ

d∑

i=1

|wi|, (6)

where w ∈ R
d is the weight vector and γ ≥ 0 is the regularization parameter.

Let w∗ denote the weight vector that minimizes the L1–regularized loss. The
second term on the right hand side of eq. (6) encourages sparse solutions to this
problem; in particular, larger values of γ lead to increasing numbers of zeros
among the elements of w∗.

To cast L1–regularized linear regression as an instance of NQP, specifically
in the form of eq. (1), we define: A = 1

n

∑n
α=1 xαxα

� and b = − 1
n

∑n
α=1 yαxα.

With these definitions, we can rewrite the L1–regularized loss in eq. (6) up to
an additive constant as:

L(w) =
1
2
w�Aw + b�w + γ

d∑

i=1

|wi| (7)

Section 3.1 describes how to minimize the right hand side of eq. (7) by solving a
problem in NQP. Section 3.2 derives the special structure of the Lagrange dual
problem for this NQP. Finally, section 3.3 presents several illustrative experi-
mental results.

3.1 Primal Formulation as NQP

We reformulate the optimization of the L1–regularized loss by decomposing w
into its positive and negative components. In particular, we introduce nonnega-
tive variables u and v such that:

w = u− v, u ≥ 0, v ≥ 0 . (8)
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As shorthand notation, we also let γ ∈ �d denote the vector whose every element
is equal to the scalar regularizer γ in eq. (7). Finally, in terms of the variables u
and v, we consider the optimization:

Minimize f(u,v) = 1
2 (u−v)�A(u−v) + b�(u−v) + γ�(u+v)

subject to u ≥ 0, v ≥ 0 .
(9)

Let [u∗
v∗ ] denote the minimizing solution of eq. (9). It is straightforward to show

that either u∗
i = 0 and/or v∗i = 0 at this minimum, due to the effect of the

regularizer γ�(u + v). It follows that u∗
i +v∗i = |u∗

i −v∗i |, and hence the minimum
of eq. (9) maps directly onto the minimum of eq. (7). Thus we can use one
problem to solve the other.

The change of variables in eq. (8) follows the strategy suggested by Koh et
al [6], transforming the non-differentiable objective function in eq. (7) to the
differentiable one in eq. (9). Here, the change of variables casts the problem of
L1–regularized linear regression as an instance of NQP. The NQP problem in
eq. (9) can be solved using the multiplicative updates from section 2. Note that
in this context, the updates are applied to the 2d-dimensional nonnegative vector
[uv] obtained by concatenating the elements of u ∈ �d

+ and v ∈ �d
+.

3.2 Dual Formulation as BQP

By minimizing the Lagrangian associated with eq. (9), we obtain the Lagrange
dual function:

g(θ, λ) = inf
u,v∈�d

[
f(u,v)− θ�u− λ�v

]
(10)

In general, the right hand side of eq. (10) is unbounded below, as can be seen
by evaluating it in the special case that u = v:

[
f(v,v) − θ�v − λ�v

]
= (2γ − θ − λ)�v (11)

Setting u = v, the right hand side of eq. (10) thus reduces to a single linear
term in v. A finite minimum does not exist because we can scale the magnitude
of v in eq. (11) to be arbitrarily large. The Lagrange dual function g(θ, λ) does,
however, have a well-defined minimum in the special case that θ and λ are chosen
precisely to cancel the divergence in eq. (11). In particular, suppose that:

λ + θ = 2γ, (12)

which causes the right hand side of eq. (11) to vanish. Enforcing this constraint,
and substituting f(u,v) from eq. (9) into eq. (10), we find that the variables u
and v appear in the Lagrangian only through their difference w = u−v. In
particular, with these substitutions, the minimization in eq. (10) reduces to:

g(θ, λ)|
λ+θ=2γ

= inf
w∈�d

[
1
2
w�Aw +

1
2

(2b + λ−θ)�w
]

. (13)
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The quadratic form in eq. (13) yields a simple minimization. Thus, collecting
the two different regimes (bounded and unbounded) of the dual, we have:

g(θ, λ) =
{
− 1

8 (2b + λ−θ)�A−1(2b + λ−θ) if λ + θ = 2γ,
−∞ otherwise.

(14)

As we shall see, the existence of these different regimes gives rise to a Lagrange
dual problem with more structure than generic instances of NQP.

We can maximize the Lagrange dual function g(θ, λ) over all nonnegative
θ, λ ≥ 0 to derive a lower bound on the primal optimization in eq. (9). Clearly,
for this maximization we only need to consider the domain over which the func-
tion g(θ, λ) is finite and bounded below. Over this domain, we can use the
equality constraint in eq. (12) to eliminate the variable λ and obtain the simpler
maximization:

Maximize h(θ) = − 1
2 (θ−b−γ)�A−1(θ−b−γ)

subject to 0 ≤ θ ≤ 2γ.
(15)

This optimization is an instance of box quadratic programming (BQP), since
in addition to the nonnegativity constraint on θ, there also appears the box
constraint implied by eq. (12). The optimization can be solved using a variant of
the multiplicative updates reviewed in section 2. The updates for BQP include
a clipping operation to enforce the upper bound θ ≤ 2γ; for further details,
see [13,14].

Note how the special structure of the primal optimization in eq. (9) is mani-
fested in its dual Lagrange problem, eq. (15). In general, as shown in section 2,
primal optimizations in NQP have dual optimizations in NQP, with both opti-
mizations over variables of the same dimensionality. Here, however, the NQP in
eq. (9) over the joint variables u,v ∈ R

d
+ generates as its Lagrange dual problem

a smaller instance of BQP over the single variable θ ∈ R
d
+.

3.3 Experimental Results

We experimented with the multiplicative updates for NQP to investigate their
performance on problems in L1–regularized linear regression. For these exper-
iments, we created artificial data sets {(xα, yα)}n

α=1 with inputs of varying di-
mensionality d ∼ 102−3.

Each data set was created as follows. First, we randomly generated a “ground
truth” weight vector w ∈ �d with precisely d/3 negative elements, d/3 zero el-
ements, and d/3 positive elements. The magnitudes of nonzero elements in this
weight vector were sampled uniformly from the unit interval. For ease of visual-
ization, the elements of w were also sorted from smallest to largest. (See the top
left panel of Fig. 2.) Second, we randomly generated n inputs by sampling the
elements of each input vector xα from a zero-mean Gaussian with unit variance.
Finally, we generated n outputs by sampling each yα from a Gaussian distribu-
tion with mean μα = w�xα and standard deviation 0.2σ, where σ measured the
standard deviation of the means {μα}n

α=1.
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The noise in these data sets prevents a linear regression from exactly recover-
ing the ground truth weight vector. The use of L1–norm regularization, however,
encourages sparse solutions, so that an L1–regularized linear regression may be
expected to yield an estimated weight vector with the same (or nearly the same)
sparsity pattern. In the experiments reported below, the data sets had n = 2d
examples (so as to scale with the dimensionality of the inputs), and we set the
regularization parameter to γ = 0.1. In this regime, L1–norm regularization had
the desired effect of encouraging appropriately sparse solutions. Our experiments
were designed to measure the convergence of the multiplicative updates in this
regime.

20 30 40 50 60
−7.2

−7

−6.8

−6.6

−6.4

iteration

primal f(u,v)
dual h( )

Fig. 1. Convergence of multiplicative
updates for primal and dual optimiza-
tions in L1–regularized linear regres-
sion; see text in section 3.3 for details

First, we present typical results from
L1–regularized linear regression on data
with input dimensionality d = 48. Fig. 1
shows the observed duality gap between
the primal and dual optimizations in
eqs. (9) and (15) as a function of the
number of multiplicative updates. Simi-
larly, Fig. 2 shows the convergence of the
weight vector w = u − v obtained from
the primal optimization. For this figure,
the elements of the weight vector were
initialized at random. Also shown in the
plot are the “ground truth” weight vector
used to generate this data set, as well as
the weight vector obtained from a linear
regression without L1–norm regularization. In both figures, it can be seen that
the multiplicative updates converge reliably to the global minimum.

Next we present results on problems of varying input dimensionality d. We
generated random data sets (as described above) with inputs of dimensionality
d = 48, 96, 192, 384, 768, and 1536. We generated twelve data sets for each input
dimensionality and averaged our results across these twelve data sets. For these

1

0

1 ground truth

1

0

1 iteration: 0 iteration: 4

0 16 32 48
1

0

1 iteration: 16

0 16 32 48

iteration: 256unregularized solution

Fig. 2. Evolution of weight vector w ∈ �48 under multiplicative updates for L1–
regularized linear regression, starting from random initialization. Also shown are the
“ground truth” weight vector (that would have been recovered in the absence of noise)
and unregularized solution.
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10
−6

10
−4

10
−2

10
0

input dimensionality (d)

er
ro

r 
(

)

=0.01s
=0.02s

=0.08s
=0.58s

=5.9s
=52s

error after d iterations
error after 10d iterations

Fig. 3. Error εt from eq. (16) after t = d and t = 10d iterations of the multiplicative
updates, on data sets of input dimensionality d. Each result represents an average
over twelve different, randomly generated data sets. For the experiments with t = d
iterations, we also indicate the CPU times τ in seconds (per data set).

experiments, the weight vector was initialized by performing a linear regression
without L1–norm regularization: namely, w0 = A−1b, with A and b defined as
in eq. (7). We measured the convergence of the multiplicative updates as follows.
Let ut, vt, and θt denote the vectors obtained after t updates on the primal and
dual optimizations in eqs. (9) and (15). Also, let wt = ut − vt. We computed
the error ratio:

εt =
L(wt)− h(θt)
L(w0)− h(θt)

. (16)

The numerator in eq. (16) simply measures the observed duality gap, while
the ratio provides an easily computed upper bound on the amount of relative
improvement L(wt)−L(w∗)

L(w0)−L(w∗) . Note that computing eq. (16) does not require exact
knowledge of L(w∗). We report the ratio in eq. (16), as opposed to the absolute
value of the duality gap, because it normalizes to some extent for the degree of
regularization and the corresponding difficulty of the optimization.

The results of these experiments are summarized in Fig. 3. On data sets of
varying dimensionality d, the figure shows the error εt after different numbers
of iterations t. The results in the figure were averaged over twelve randomly
generated data sets. The figure show the average error εt after t = d and t = 10d
iterations of the multiplicative updates: that is, after a number of iterations equal
to and ten times greater than the input dimensionality. Again, it is seen that the
multiplicative updates converge reliably and quickly to the global minimum. In
terms of computation, each iteration of the updates involves four matrix-vector
multiplications (two for the primal, two for the dual), but no matrix inversions or
matrix-matrix multiplications. The figure also shows representative CPU times
τ per data set, in matlab, on a Mac Pro workstation with a 2 × 3 GHz Dual-
Core Intel Xeon processor. For t iterations of the updates, we expect τ = O(td2),
which is generally observed for medium to large values of d.
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4 L1–Regularized Logistic Regression

In this section, we show how to use multiplicative updates for L1–regularized
logistic regression. The training data consists of labeled examples {(xα, yα)}n

α=1,
where xα ∈ R

d and yα ∈ {0, 1}. Let sα = 2yα−1 denote the negatively and
positively labeled examples by their signs {−1, +1}. The L1–regularized log-loss
is given by:

L(w) = − 1
n

n∑

α=1

log σ
(
sαw�xα

)
+ γ

d∑

i=1

|wi|, (17)

where w ∈ R
d is the weight vector, σ(z) = [1 + e−z]−1 is the logistic function,

and γ ≥ 0 is the regularization parameter.

−6 −4 −2 0 2 4 6
−8

−6
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0

z

log (z)
lower bound
Taylor series

Fig. 4. Comparison of log σ(z), its
quadratic Taylor series approximation,
and the lower bound in eq. (18). The
three curves meet inside the square box.
Note that the Taylor series approxima-
tion does not provide a lower bound.

Many algorithms for logistic regression
are based on local quadratic approxima-
tions [9] to the log-loss in the neighbor-
hood of the current estimate w. These
quadratic approximations generate iter-
atively reweighted least squares (IRLS)
sub-problems that can be solved using
simpler methods. The simplest quadratic
approximation is obtained by expanding
the first term on the right hand side
in eq. (17) by its Taylor series. In our
work, we use a different quadratic ap-
proximation that instead provides a prov-
ably global upper bound on the log-loss.
Our approximation relies on an inequal-
ity originally introduced in the context of
Bayesian logistic regression [4]:

log σ(z′) ≥ log σ(z) +
1
2
(z′ − z) − tanh(z/2)

4z
(z′2 − z2). (18)

Eq. (18) holds for all real-valued pairs (z, z′) and reduces to an equality for z′=z.
Fig. 4 illustrates the bound around the point z = − 5

4 . This bound provides a
more controlled approximation to the loss function than the one obtained from its
Taylor series: in particular, looseness in the bound leads us only to underestimate
the progress made in optimizing the true loss function. Applying the quadratic
bound in eq. (18) to eq. (17) in the neighborhood of the current estimate w, we
generate a L1–regularized least squares sub-problem that can be solved using
the multiplicative updates from section 3. In fact, it is not necessary to iterate
the multiplicative updates on these least squares sub-problems to convergence.
Instead, we perform just one multiplicative update, then recompute the local
quadratic approximation before performing the next one.

We experimented with the 20 newsgroups data set, currently available at
the web site http://people.csail.mit.edu/jrennie/20Newsgroups. We attempted
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Table 1. Percentage of zero elements in the weight vector and CPU times for L1–
regularized logistic regression on the newgroup data set

regularizer (γ) sparsity (%) time (sec)

0.010 89.76 1296
0.025 92.24 1436
0.050 92.92 1218

regularizer (γ) sparsity (%) time (sec)

0.100 93.25 986
0.250 93.45 672
0.500 93.54 535

to replicate the set-up in [6]. Classifiers were trained to distinguish documents
from newsgroups with names of the form sci.*, comp.*, and misc.forsale
versus all the rest. We used the Bow toolkit [11] with the command “rainbow
-g 3 -h -s -O 2 -i” to generate document feature vectors. This created 18,792
examples, each with 1,258,799 features. To manage the extremely high dimen-
sionality of the feature space, we exploited the nonnegativity and sparseness of
the feature vectors. In particular, by careful bookkeeping, it is possible to im-
plement the multiplicative updates for L1–regularized linear regression without
having to construct or store the matrix A in eq. (7). Also, we only used mul-
tiplicative updates to solve the primal optimizations for L1–regularized IRLS
sub-problems: the dual optimizations were not constructed. The weight vectors
were initialized from the results of unregularized logistic regressions, performed
by limited-memory quasi-Newton methods (L-BFGS). For the L1–regularized
solutions, we terminated the multiplicative updates when the relative improve-
ment of eq. (17) per iteration was less than 10−3 or when the training error
dropped below 0.01%. Though not particularly stringent, these stopping criteria
sufficed for the multiplicative updates to generate sparse solutions.

Table 1 shows results averaged over eight random 70/20/10 splits of the data
into training, test, and development sets. The development set in each split was
used to tune the value of the regularization parameter, γ. As expected, increasing
values γ led to solutions of increasing sparsity. These solutions were found in
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Fig. 5. Development and test error rates on one particular random split of the news-

group data. A value γ = 10−7 is found that improves generalization in this split.
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approximately 10-20 minutes of CPU time, demonstrating the feasibility of our
approach for large-scale problems.

In half of the train/test/development splits of the newsgroup data set, we
observed that regularization led to improved generalization. For a typical one of
these splits, Fig. 5 shows the error rates on the test and development sets as a
function of the regularization parameter γ. It is possible that more consistent
improvement across splits would have been observed using a finer search for the
regularization parameter γ.

5 Discussion

There is a large literature on algorithms for L1–regularized linear and logistic
regression. Here, we highlight several recent approaches related to our own, as
well as indicating important differences.

Closest in spirit to our approach are other bound optimization algorithms [7,10]
which derive updates from an auxiliary function. In contrast to our approach, how-
ever, these other algorithms have non-multiplicative updates that involve matrix
inverses. These matrix inverses are needed to re-estimate all of the elements of the
weight vector w ∈ �d in parallel (as opposed to simply performing coordinate de-
scent). For large d, however, these matrix inverses may be prohibitively expensive.

Lee et al [9] pursue an iterative strategy for logistic regression that, like ours, is
also based on quadratic approximations to the differentiable part of the log-loss.
They use the LARS algorithm [3] to solve L1-regularized least squares problems
generated by second-order Taylor expansions. Our approach differs in using a
variational bound for the quadratic approximation (see Fig. 4) and calling the
multiplicative updates to solve the L1–regularized least squares problems.

Koh et al [6] describe a fast, state-of-the-art interior point method [17] for L1–
regularized logistic regression. Our approach was directly inspired by two aspects
of their work: first, the way they recast the L1–norm regularizer as part of a dif-
ferentiable objective function, and second, their impressive results on large-scale
problems. (The newsgroup data set analyzed in [6] is far larger than any of the
data sets analyzed in [7,9,10].) Our approach differs from Koh et al [6] in that it
provides a reasonably effective yet simpler re-estimation procedure. The multi-
plicative updates appear easier to implement, though not as fast to converge.

There are several important directions for future work. Though we have
demonstrated the feasibility of our approach on a very large problem in lo-
gistic regression, with over one million features, further benchmarking is clearly
needed. Also, we hope to study settings in which the updates are not merely
used to solve isolated problems in L1–regularized regression, but are embedded
in larger models with more expressive power.
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Abstract. We present a new machine learning approach to the inverse
parametric sequence alignment problem: given as training examples a
set of correct pairwise global alignments, find the parameter values that
make these alignments optimal. We consider the distribution of the scores
of all incorrect alignments, then we search for those parameters for which
the score of the given alignments is as far as possible from this mean,
measured in number of standard deviations. This normalized distance is
called the ‘Z -score’ in statistics. We show that the Z -score is a function
of the parameters and can be computed with efficient dynamic programs
similar to the Needleman-Wunsch algorithm. We also show that maximiz-
ing the Z -score boils down to a simple quadratic program. Experimental
results demonstrate the effectiveness of the proposed approach.

1 Introduction

We consider the problem of learning to align biological sequences given a training
set of correct global alignments. Learning to align means learning the alignment
parameters (the scoring matrix and gap costs) in such a way that the correct
alignment has the best score among all possible alignments between two given
sequences. This task is known as the Inverse Parametric Sequence Alignment
Problem (IPSAP) introduced by Gusfield [4] and falls in the category of inverse
parametric optimization problems [2]. Since its introduction, the problem has
received considerable attention, e.g. in [5,6,7,9,10]. A similar task is also consid-
ered in [3] where a learning approach is used to determine the parameters of an
unusual score function.

The most straightforward approach to IPSAP would be to consider a con-
straint for each incorrect alignment, and to explicitly specify that its score should
be smaller than the score for the correct one. Such constraints can be shown to
be linear in the alignment parameters, such that a linear programming method
would suffice to find a feasible point satisfying all these constraints (assuming
such a feasible point exists). However, a direct implementation of this strategy
would be totally infeasible, as the number of incorrect alignments (and hence
the number of constraints) is exponential in the length of the sequences.

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 25–36, 2007.
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A few recent publications [6], [7] have attacked this problem by adding con-
straints incrementally. Roughly their strategy can be summarized as follows.
First an initial guess for the parameters is made. Then, the best alignment for
this parameter setting is computed (using dynamic programming (DP)), and
if it is not the optimal one, it is used in a constraint that specifies that its
score should be worse than for the given, correct alignment. However, for each
constraint to be added in this way an alignment needs to be computed, which
quickly becomes expensive for long sequences and large numbers of iterations.

In this work, we approach the problem from a radically different perspec-
tive. Instead of considering incorrect alignments one by one as they turn out to
have a better score for the current guess of the parameters, we consider the full
distribution of the score of all possible alignments between the given sequence
pairs. In particular, we compute the mean and the variance of this distribution
as a function of the parameters. Importantly it can done exactly and efficiently,
since a DP approach similar to the Needleman-Wunsch (NW) algorithm [8] is
used. Then, we maximize the Z -score of the correct alignment subject to the
alignment parameters, where the Z -score is defined as the number of standard
deviations the score is away from its mean. In this way, the score of the correct
alignment is separated as well as possible from the bulk of all alignment scores
without considering each of these separately.

2 The Z -Score

Consider two strings S1 = s1(1) . . . s1(n1) and S2 = s2(1) . . . s2(n2) of lengths
n1 and n2 respectively. The strings are ordered sequences of symbols s ∈ S, with
S a finite alphabet of size nS . In case of biological applications, the alphabet
may contain the symbols associated to nucleotides (S = {A, C, G, T}) or to amino
acids. For ease of notation, we will use the first nS integers as the alphabet
S = {1, 2, . . . nS}.
Definition 1. A global alignment A of two strings S1 and S2 is defined as a
pair of strings S′

1 = s′1(1)s′1(2) . . . s′1(n) and S′
2 = s′2(1)s′2(2) . . . s′2(n) of length

n for which s′1(i), s
′
2(i) ∈ S′ = S ∪ {−}, that are obtained by inserting the −

symbol anywhere in respectively S1 and S2, in such a way that there exists no
i for which s′1(i) = s′2(i) = −.

Every symbol s′1(i) corresponds to a specific symbol s′2(i). If these symbols are
equal, we call this a match. If they are not equal, this is a mismatch. If one of
the symbols is a −, this is called an indel or a gap. With each possible match,
substitution or gap at position i, a score is attached. To quantify these scores,
three score parameters can be used, one corresponding to a match (αm), one to
a mismatch (αs), and one to a gap (αg). The score of the global alignment can
be expressed as a linear function of these parameters:

φ (S1, S2,A) = αmm + αss + αgg = αTx

where we have defined the vectors αT = [αm αs αg] and xT = [m s g] and m, s
and g represent the number of matches, mismatches and gaps in the alignment.
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In this model the penalty of a gap is fixed independently of the other gaps in
the alignment. However for biological reasons it is often preferable to consider an
affine function for gap penalties, i.e. to assign different costs if the gap starts (gap
opening penalty αo) in a given position or if it continues (gap extension penalty
αe). The score is also a linear function of the parameters, if αT = [αm αs αo αe]
and xT = [m s o e], with o and e being respectively the number of gap openings
and gap extensions.

Since not all matches and mismatches are created equal, most often a symmet-
ric scoring matrix A ∈ �nS×nS will be considered, which specifies different score
values for matches and mismatches. For 1 ≤ j, k ≤ nS , A(j, k) = A(k, j) = αjk

represents the score associated with the correspondence between s′1(i) = j and
s′2(i) = k or viceversa (thus, for j = k, there is a match, for k 
= j there
is a mismatch). In general we have nS(nS+1)

2 different parameters associated
with the symbols of the alphabet plus two additional one corresponding to the
gap penalties. We denote with qjk the number of pairs with s′1(i) = j and
s′2(i) = k and viceversa. Then the score is still φ (S1, S2,A) = αT x, with
αT = [α11 α12 . . . αnSnS αe αo] and xT = [q11 q12 . . . qnSnS e o].

The number N of possible alignments Aj between S1 and S2 is clearly expo-
nential in the sizes of the two strings. However, given a set of scoring parameters
α, by the NW algorithm [8] the alignment with maximal score Ā can be com-
puted in O(n1n2)-time. The optimal score is φ

(
S1, S2, Ā

)
= αT x̄, where for

example in the three parameters model x̄T = [m̄ s̄ ḡ], contains the number of
matches, mismatches and gaps in Ā.

Since the scoring function φ (S1, S2,A) is linear in the parameters also the
mean μ (S1, S2) of the scores for all the alignments between S1 and S2 is linear:

μ (S1, S2) =
1
N

N∑

j=1

φ (S1, S2,Aj) = αT 1
N

N∑

j=1

xj = αT μx

where μx is the vector of the average values of x components by components. For
example, in the three parameter model, μx = [μm μs μg] is the vector containing
the average number of matches, mismatches and gap respectively. In a similar
way, for the variance σ2 (S1, S2) we have:

σ2 (S1, S2) =
1
N

N∑

j=1

(αTxj −αT μx)2 = αT Cα

where C is a covariance matrix with elements:

ctk =
1
N

N∑

j=1

tjkj − μtμk = vtk − μtμk (1)

with t, k ∈ {m, s, g} or t, k ∈ {q11 q12 . . . qnSnS o e} respectively in the three
parameters model and for an alphabet with nS symbols and affine gap penalties.
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Definition 2. Let μ (S1, S2) and σ2 (S1, S2) be the average score and the vari-
ance of the scores for all possible alignments between S1 and S2. We define the
Z-score:

Z (S1, S2) =
φ
(
S1, S2, Ā

)
− μ (S1, S2)

σ (S1, S2)
=

αT b√
αT Cα

(2)

with b = x̄− μx

Z -score for a set of aligned sequence pairs. More in general, we will con-
sider a set of m pairs of sequences S1i and S2i, i = 1 . . .m along with an align-
ment Āi. In such case we can extend the alignment score by defining it as the
sum of the alignments scores for each of the alignments in the set. The mean
of this is the sum of the means for all sequence pairs (S1i, S2i) separately, and
can be summarized by b∗ =

∑
i bi. Similarly, the variance is the sum of the

variances: C∗ =
∑

i Ci. Hence, the Z -score can be extended naturally to the
case where there is more than one given aligned sequence pair by using for b∗

and C∗ instead of b and C in (2) above.

3 Fast and Exact Computation of the Z -Score

Given a pair of sequences S1 and S2, the computation of b and C is not trivial
since the number of possible alignments N is exponential in the length of the
sequences. In the following we show how DP can be used to obtain these values
in a fast and efficient way.

The Simplest Scoring Scheme: Match, Mismatch, Gap. Assuming the
previous notation, we have b = x̄ − μx. While x̄ is given, the components of
μx can be calculated exactly through DP. First, a matrix p is filled. Every cell
p(i, j) contains the number of all possible alignments between two prefixes of
the strings S1 and S2. In fact each alignment corresponds to a path in the DP
matrix. At the same time the DP tables for μm, μs and μg are gradually filled
according to appropriate recursive relations. For example each element μm(i, j)
is computed dividing the total number of matches by the number of alignments
p(i, j). If a match occur in position (i, j) (M = 1) the total number of matches
in (i, j) is obtained adding to the number of matches in the previous steps
(μm(i, j − 1)p(i, j − 1), μm(i− 1, j − 1)p(i− 1, j − 1) and μm(i− 1, j)p(i− 1, j))
p(i−1, j−1) times a match. Once the algorithm is terminated, the mean values
can be read in the cells μm(n1, n2), μs(n1, n2) and μg(n1, n2). In the same way
also the elements of the covariance matrix C can be computed. This matrix is
symmetric (csg = cgs, cmg = cgm, csm = cms) and its elements can be obtained
considering (1) with t, k ∈ {m, s, g}. The values of vtk can be calculated, as for
the mean values, with opportune recursive relations. Algorithm 1 shows in detail
the computation of μm, while Algorithm 3 report the recursive relations for the
other parameters (the associated initial conditions are not indicated due to lack
of space).
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Affine Gap. In a four parameter model (affine gap penalty), C is a 4x4 sym-
metric matrix with elements ctk given by (1), with t, k ∈ {m, s, o, e}. The terms
μm, μs, vmm, vms and vss are calculated as above, while the other values are
obtained with the formulas in Algorithm 3 in Appendix. The terms vse and vso

are missing since they can be calculated with the same formulas of vme and vmo

changing M with 1−M and μm with μs. Note that in some cases for low values
of (i, j) some terms are not defined (i.e. p(i, j−3) when j = 2). In such situations
they must be ignored.

Due to lack of space an exhaustive explanation of recursive relations in Algo-
rithm 3 is omitted. In order to just give the main idea behind them we pro-
vide an example. Suppose we want to compute the mean of the number of
gap openings μo. Algorithm 1 with appropriate initial conditions (μo(0, 0) = 0,
μo(i, 0) = 1, ∀i = 1 . . . n1, μo(0, j) = 1, ∀j = 1 . . . n2) is used. Each element of
the DP table μo(i, j) is computed dividing the total number of gap openings by
the number of alignments p(i, j). The total number of gap openings in (i, j) is
obtained adding to the contribute of the previous steps (μo(i, j − 1)p(i, j − 1),
μo(i−1, j−1)p(i−1, j−1) and μo(i−1, j)p(i−1, j)) the number of gap openings
in the current step. It is easy to verify that it is given by p(i−1, j)−p(i−2, j)+
p(i, j − 1)− p(i, j − 2).

Algorithm 1. Computation of μm

Input: a pair of sequences S1 and S2.

p(0, 0) = 1, μm(0, 0) = 0
for i = 1 : n1,

p(i, 0) = 1
μm(i, 0) = 0

end
for j = 1 : n2

p(0, j) = 1
μm(0, j) = 0

end
for i = 1 : n1

for j = 1 : n2

p(i, j) = p(i − 1, j − 1) + p(i, j − 1) + p(i − 1, j)
if s1(i) = s2(j) then M = 1 else M = 0

μm(i, j) = μm(i−1,j)p(i−1,j)+μm(i,j−1)p(i,j−1)+(μm(i−1,j−1)+M)p(i−1,j−1)
p(i,j)

end
end
Output: μm(n1, n2)

Extension to a General Scoring Matrix. Assuming to align sequences of
amino acids we have different parameters for each pair of them (in total 210
parameters) plus other 2 parameters for gap opening and gap extension. The
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formulas developed above apply with minor modifications. Concerning the mean
values, μo and μe are calculated as before. For the others it is:

μqty (i, j) =
1

p(i, j)
(μqty (i− 1, j)p(i− 1, j) + μqty (i, j − 1)p(i, j − 1)

+(μqty (i− 1, j − 1) + M)p(i− 1, j − 1))

where M = 1 when s′1(i) = t and s′2(j) = y or viceversa with t, y ∈ S. The matrix
C is a symmetric matrix 212x212. The values veo, vee and voo are calculated
as above. The derivation of formulas for vqtyqt′y′ is straightforward from vms

considering the appropriate values for M and the mean values. The recursions
for voqty and veqty are similar to those of vmo and vme.

4 Inverse Parametric Sequence Alignment Problem

In IPSAP the task is to determine a value for the scoring parameters that makes
a given set of aligned sequence pairs optimal. Let consider as training set m pairs
of sequences S1i and S2i, i = 1 . . .m and their optimal alignments Āi. We are
interested in determining values of the parameters α such that:

φ
(
S1i, S2i, Āi

)
≥ φ (S1i, S2i,Aij) ∀Aij 
= Āi ∀ i = 1 . . .m ∀ j = 1 . . .N

Due to the linearity of φ
(
S1i, S2i, Āi

)
these constraints can be expressed as a

set of linear inequality constraints C:

αT x̄i ≥ αTxij ∀Aij 
= Āi ∀ i = 1 . . .m ∀ j = 1 . . .N (3)

These constraints specify a convex set to which the parameters may belong. A
common approach [6,7] is to define an objective function, which is minimized
subject to these constraints. In this paper, we choose the objective function in a
deliberate way, the aim being twofold. First, as in previous approaches it is easy
to optimize (i.e., convex). Second, it is designed such that most, if not all, of the
constraints are satisfied automatically, further reducing computational cost.

Such an objective function is given by the Z -score. In fact, given a pair of
aligned sequences, scoring parameter vectors with a high Z -score correspond to
few alignments with score higher than that of the given one. On the contrary
a small Z -score indicates a low position of the target alignment in the ranking
associated with that scoring model. Interestingly, under normality assumptions
(which we verified to be close to valid for the score distributions examined in the
experiments) this Z -score is directly equivalent to a p-value. Hence, maximizing
the Z -score can be interpreted as maximizing the significance of the correct
alignment score: the larger the Z -score, the more significant the correct alignment
is, or the more different it is from the distribution of random alignments.

The problem we are interested in is:

maxα
αT b∗√
αT C∗α
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Since the objective is invariant to a positive scaling and due to the monotonicity
of the square root, we can reformulate the problem as a quadratic programming
(QP) problem:

minα αT C∗α (4)
s.t. αT b∗ ≥ 1

Note that being C∗ positive definite, the objective function is convex.
The result of using the Z -score is that the constraints are generally inactive,

as directly maximizing the Z -score without any constraints (3) often leads to a
result that automatically satisfies them all. Naturally, in some cases the result
of (4) still violates some of them, and one may want to impose these explicitly.
This feasible region is also convex, hence the optimization problem remains con-
vex, and solvable by standard means. To solve this problem one can adopt an
incremental algorithm that starts without any constraints (3) and progressively
add the most violated constraint until convergence is reached (see Algorithm
2 in Appendix). The algorithm is then of a similar structure as previous ap-
proaches to IPSAP such as [7]. However, the crucial difference is that we use
another cost function, which ensures that the number of iterations is generally
much smaller.

Note that the unconstrained method based on the Z -score (Eq. 4) elegantly
deals with cases where there exists no parameter setting for which the given
alignments are optimal. On the other hand, the constraint-based approach would
have an infeasible constraint set in this case. This problem can be solved by
relaxing the constraints, by requiring the inequalities to hold subject to a small
tolerance ε (as in [6]).

Algorithm 2. Incremental algorithm to incorporate active constraints.
Input: m optimal alignments Āi between S1i and S2i. The required accuracy ε.

for i = 1 . . . m compute bi and C i

Compute b∗ := sum(bi) and C∗ := sum(C i)
Find αopt solving QP (4)
Repeat

exit := 0
for i = 1 . . . m

Compute x′
i := arg maxx φ (S1i, S2i, Ai)

If αT
optx

′
i − (1 + ε)αT

optx̄ ≥ 0
exit := 1
C := C ∪ {αT ((1 + ε)x̄ − x′

i) ≥ 0}
Find αopt solving QP (4) s.t. C

end
until exit = 1
Output: αopt



32 E. Ricci, T. de Bie, and N. Cristianini

5 Experimental Results

In this section we present some results obtained by applying our method to both
real and artificial amino acids sequences. The first series of experiments shows
the effectiveness of our approach for an arbitrary number of parameters when
the optimization problem QP is feasible. Artificial pairs of sequences of length
100 have been randomly generated and split into training and test sets. The size
of the training set is variable while the test set is fixed to 100 pairs. A random
vector of parameters is considered to align the sequences. Then our algorithm
is used to recover the optimal values of the scoring parameters and the original
sequences are realigned. We measure the performance of our method in terms
of correctly recovered alignments. While the error on the training set is always
zero, Fig. 1.a depicts the average test error on 1000 different experiments. As
expected the learning curves approaches to zero still for training set of small
dimensions and the convergence is faster for the model with three parameters.

We also consider the number of constraints that must be incorporated before
the algorithm converges in the three parameter model. Again 1000 pairs of ran-
dom sequences of length 100 have been generated and aligned with a random set
of parameters. Then our algorithms is used to calculate the optimal parameters
for each pair of sequences separately. The number of constraints needed to reach
convergence is measured. Figure 1.b shows that on average 85% of pairs are cor-
rectly aligned solving the QP without incorporating any constraints, about 14%
of pairs needs one or two constraints, while the maximum number of constraints
does not exceed three.
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Fig. 1. (a) Test error as function of the training set size. (b) Distribution of correctly
reconstructed alignments as a function of the number of additional constraints.

Finally we assess the effectiveness of the proposed method on real sequences
of amino acids. We perform experiments similar to those presented in the pa-
per of Kececioglu et al. [6]. We consider five multiple alignments from the PALI
database [1] of structural protein alignments: T-boxes (box), NADH oxidore-
ductases (nad), Kunitz inhibitors (kun), Sir2 transcription regulators (sir) and



Learning to Align: A Statistical Approach 33

pectin methylesterases (pec). For each group of proteins we selected ten se-
quences as training set and ten for the test set.

Two different models of scoring parameters are evaluated, with 4 and 212
parameters respectively. Since the problems are infeasible a tolerance constant
ε must be set to fix the required accuracy: it can be done with a fast binary
search strategy as in [6]. Results are shown in Table 1. Here performances for
both models are evaluated in terms of the number of alignments that scores
higher than the given ones (alignments with the same summary x are considered
the same). As shown in the table this number is quite low for both models.
To have an idea we should keep in mind that the number of possible optimal
alignment summaries is bounded from above by a polynomial in n1 and n2 of
degree k(k−1)

k+1 , where k is the number of the parameters [9]. This clearly shows
that the parameters vector given by our algorithm is a near-optimal solution.
Also the number of constraints added is quite low (< 45): it means that less
than one constraint for training pair is needed.

Table 1. Error rates and added constraints (in parenthesis) in the PALI dataset

4 parameters 212 parameters

Dataset Tr error Te error Tr error Te error

nad 4.95 (5) 6.46 567.46 (21) 703.12
kun 1.46 (12) 0.95 386.46 (41) 457.3
box 1 (3) 1.13 211.3 (12) 256.7
sir 1 (10) 1.16 236 (36) 301.44
pec 46.2 (8) 76.1 835.12 (31) 1054.12

6 Conclusions

We developed a new algorithm for IPSAP, which efficiently finds a scoring pa-
rameter setting consistent with a given training set of correct alignments. The
algorithm is fast and easy to implement since it relies on dynamic program-
ming to compute the Z -score as a function of the parameters, and a very simple
quadratic program to subsequently maximize the Z -score. It can be applied to
an arbitrary number of parameters provided appropriate recursive relations for
mean values and covariance matrices are used. It naturally and adequately deals
with the infeasible case where there exists no parameter setting for which the
correct alignments are optimal.

Compared to previous methods, the proposed approach has the benefit that
no or only very few constraints need to be added, such that in practice is clearly
faster for long sequences. The cost of computing b and C is fixed (O(kn1n2)
where k is the number of parameters) and is performed only once at the beginning
of the method, whereas in other approaches many times the NW algorithm needs
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to be invoked. Furthermore, it is conceivable that approximate algorithms can
be developed to obtain an estimate of the mean and variance (e.g. a method
based on random walks along the possible paths) with a significantly reduced
computational cost.
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Appendix

Algorithm 3. Extra recursions for the three and four parameter models
μs(i, j) = 1

p(i,j) (μs(i − 1, j)p(i − 1, j) + μs(i, j − 1)p(i, j − 1)

+(μs(i − 1, j − 1) + (1 − M))p(i − 1, j − 1))

μg(i, j) = 1
p(i,j) (μg(i − 1, j) + 1)p(i − 1, j) + (μg(i, j − 1) + 1)p(i, j − 1)

+μg(i − 1, j − 1)p(i − 1, j − 1))

μe(i, j) = 1
p(i,j) (μe(i − 1, j)p(i − 1, j) + p(i − 2, j) + μe(i, j − 1)p(i, j − 1)

+p(i, j − 2) + μe(i − 1, j − 1)p(i − 1, j − 1))

μo(i, j) = 1
p(i,j) (μo(i − 1, j)p(i − 1, j) + p(i − 1, j) − p(i − 2, j)+

μo(i, j − 1)p(i, j − 1) + p(i, j − 1) − p(i, j − 2) + μo(i − 1, j − 1)p(i − 1, j − 1))

vmm(i, j) = 1
p(i,j) (vmm(i − 1, j)p(i − 1, j) + vmm(i, j − 1)p(i, j − 1)

+(vmm(i − 1, j − 1) + 2Mμm(i − 1, j − 1) + M)p(i − 1, j − 1))

vss(i, j) = 1
p(i,j) (vss(i − 1, j)p(i − 1, j) + vss(i, j − 1)p(i, j − 1)

+(vss(i − 1, j − 1) + 2(1 − M)μs(i − 1, j − 1) + (1 − M))p(i − 1, j − 1))

vgg(i, j) = 1
p(i,j) (vgg(i − 1, j) + 2μg(i − 1, j) + 1)p(i − 1, j)

+(vgg(i, j − 1) + 2μg(i, j − 1) + 1)p(i, j − 1) + vgg(i − 1, j − 1)p(i − 1, j − 1))

vmg(i, j) = 1
p(i,j) (vmg(i − 1, j) + μm(i − 1, j))p(i − 1, j) + (vmg(i, j − 1)

+μm(i, j − 1))p(i, j − 1) + (vmg(i − 1, j − 1) +Mμg(i − 1, j − 1))p(i − 1, j − 1))

vsg(i, j) = 1
p(i,j) (vsg(i − 1, j) + μs(i − 1, j))p(i − 1, j) + (vsg(i, j − 1)

+μs(i, j − 1))p(i, j − 1) + (vsg(i − 1, j − 1)
+(1 − M)μg(i − 1, j − 1))p(i − 1, j − 1))
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vms(i, j) = 1
p(i,j) (vms(i − 1, j)p(i − 1, j) + vms(i, j − 1)p(i, j − 1)

+(vms(i−1, j −1)+Mμs(i−1, j −1)+(1−M)μm(i−1, j −1))p(i−1, j −1))

voo(i, j) = 1
p(i,j) (voo(i − 1, j − 1)p(i − 1, j − 1) + voo(i − 1, j)p(i − 1, j)

+2(μo(i − 1, j)p(i − 1, j) − μo(i − 2, j)p(i − 2, j) − p(i − 2, j) + p(i − 3, j))
+p(i − 1, j) − p(i − 2, j) + voo(i, j − 1)p(i, j − 1) + 2(μo(i, j − 1)p(i, j − 1)
−μo(i, j − 2)p(i, j − 2) − p(i, j − 2) + p(i, j − 3)) + p(i, j − 1) − p(i, j − 2)

vee(i, j) = 1
p(i,j) (vee(i − 1, j − 1)p(i − 1, j − 1) + vee(i − 1, j)p(i − 1, j)

+2μe(i − 2, j)p(i − 2, j) + 2p(i − 3, j) + p(i − 2, j) + vee(i, j − 1)p(i, j − 1)
+2μe(i, j − 2)p(i, j − 2) + 2p(i, j − 3) + p(i, j − 2))

vmo(i, j) = 1
p(i,j) ((vmo(i − 1, j) + μm(i − 1, j))p(i − 1, j) − μm(i − 2, j)p(i − 2, j)

+(vmo(i, j − 1) + μm(i, j − 1))p(i, j − 1) − μm(i, j − 2)p(i, j − 2)
+(vmo(i − 1, j − 1) + Mμo(i − 1, j − 1))p(i − 1, j − 1))

vme(i, j) = 1
p(i,j) ((vme(i − 1, j − 1) + Mμe(i − 1, j − 1))p(i − 1, j − 1)

+vme(i − 1, j)p(i − 1, j) + μm(i − 2, j)p(i − 2, j) + vme(i, j − 1)p(i, j − 1)
+μe(i, j − 2)p(i, j − 2))

veo(i, j) = 1
p(i,j) (veo(i − 1, j − 1)p(i − 1, j − 1) + veo(i, j − 1)p(i, j − 1)

+μo(i, j − 2)p(i, j − 2) + p(i, j − 2) − 2p(i, j − 3) + μe(i, j − 1)p(i, j − 1)
−μe(i, j − 2)p(i, j − 2) + veo(i − 1, j)p(i − 1, j) + μo(i − 2, j)p(i − 2, j)
+p(i − 2, j) − 2p(i − 3, j) + μe(i − 1, j)p(i − 1, j) − μe(i − 2, j)p(i − 2, j))
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Abstract. Estimating the reliability of individual classifications is very
important in several applications such as medical diagnosis. Recently,
the transductive approach to reliability estimation has been proved to be
very efficient when used with several machine learning classifiers, such as
Naive Bayes and decision trees. However, the efficiency of the transduc-
tive approach for state-of-the art kernel-based classifiers was not consid-
ered. In this work we deal with this problem and apply the transductive
reliability methodology with sparse kernel classifiers, specifically the Sup-
port Vector Machine and Relevance Vector Machine. Experiments with
medical and bioinformatics datasets demonstrate better performance of
the transductive approach for reliability estimation compared to reliabil-
ity measures obtained directly from the output of the classifiers. Further-
more, we apply the methodology in the problem of reliable diagnostics of
the coronary artery disease, outperforming the expert physicians’ stan-
dard approach.

1 Introduction

Decision-making is usually an uncertain and complicated process, therefore it
is often crucial to know the magnitude of diagnosis’ (un)reliability in order to
minimize risks, for example in the medical domain risks related to the patient’s
health or even life. One of the reasons why machine learning methods are in-
frequently used in practice is that they fail to provide an unbiased reliability
measure of predictions.

Although there are several methods for estimating the overall performance
of a classifier, e.g cross-validation, and quality (reliability and validity) of col-
lected data [1], there is very little work on estimating the reliability of individ-
ual classifications. The transductive reliability methodology as introduced in [2]
computes the reliability of an individual classification, by studying the stability
of the trained model when the training set is perturbed (the newly classified
example is added to the training set and the classifier is retrained). For reliable
classifications, this process should not lead to significant model changes. The
transductive reliability methodology has been applied on traditional classifiers
like Naive Bayes and decision trees with interesting results. Here, we examine
the effectiveness of this methodology when applied on sparse kernel-based clas-
sifiers, such as the Support Vector Machine (SVM) and the Relevance Vector

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 37–47, 2007.
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Machine (RVM), and compare transductive reliability estimations with reliabil-
ity measures based on the outputs that SVM and RVM provide. Furthermore, we
apply the methodology for diagnosis of the coronary artery disease (CAD) using
kernel-based classifiers and compare our results to the performance of expert
physicians using an established standard methodology.

2 Transduction Reliability Estimations

Transduction is an inference principle that takes a training sample and aims at
estimating the values of a discrete or continuous function only at given unlabeled
points of interest from input space, as opposed to the whole input space for
induction. In the learning process the unlabeled points are suitably labelled and
included into the training sample. The usefullness of unlabeled data has also
been advocated in the context of co-training. It has been shown [3] that for every
better-than-random classifier its performance can be significantly improved by
utilizing only additional unlabeled data.

The transductive reliability estimation process and its theoretical foundations
originating from Kolmogorov complexity are described in more detail in [2].
In practice, it is performed in a two-step process, featuring an inductive step
followed by a transductive step.
– An inductive step is just like an ordinary inductive learning process in Ma-

chine Learning. A Machine Learning algorithm is run on the training set, in-
ducing a classifier. A selected example is taken from an independent dataset
and classified using the induced classifier. An example, labelled with the
predicted class is temporarily included into the training set (Figure 1a).

– A transductive step is almost a repetition of an inductive step. A Machine
Learning algorithm is run on the changed training set, transducing a classi-
fier. The same example as before is taken from the independent dataset and
is classified using the transduced classifier (Figure 1b). Both classifications of
the same example are compared and their difference (distance) is calculated,
thus approximating the randomness deficiency.

– After the reliability is calculated, the example in question is removed from
the training set.

The machine learning algorithm, whose reliability is being assessed, is assumed to
provide a probability distribution p that describes the probability that its input
belongs at each possible class. In order to measure how much the model changes,
we calculate the distance between the probability distribution p of the initial
classifier and the probability distribution q of the augmented classifier, using the
Symmetric Kullback-Leibler divergence, or J-divergence, which is defined as

J(p, q) =
n∑

i=1

(pi − qi) log2

pi

qi
. (1)

J(p, q) is limited to the interval [0,∞), with J(P, P ) = 0. For the ease of in-
terpretation, it is desirable for reliability values to be bounded to the [0, 1] in-
terval, J(p, q) is normalized in the spirit of Martin-Löf’s test for randomness
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Fig. 1. Transductive reliability estimation

[2,4, pp. 129], to obtain the transductive reliability measure (TRE) used in our
approach:

TRE = 1− 2−J(p,q). (2)

Due to non-optimal classifiers resulting from learning in noisy and incomplete
datasets, it is inappropriate to select a priori fixed boundary (say, 0.90) as a
threshold above which a classification is considered reliable. To deal with this
problem, we split the range [0, 1] of reliability estimation values into two in-
tervals by selecting a threshold T . The lower interval [0, T ) contains unreliable
classifications, while the higher interval [T, 1] contains reliable classifications.
As a splitting point selection criterion we use maximization of the information
gain[5]:

Gain = H(S)− |S1|
|S| H(S1)−

|S2|
|S| H(S2), (3)

where H(S) denotes the entropy of set S, S1 = {x : TRE(x) < T } is the set of
unreliable examples and S2 = {x : TRE(x) > T } is the set of reliable results.

Note that our approach is considerably different from that described in [6,7].
Their approach is tailor-made for SVM (it works by manipulating support vec-
tors) while ours requires only that the applied classifier provide a probability
distribution. Our approach can also be used in conjunction with probability
calibration, e.g. by utilizing the typicalness concept [8,9].

3 Kernel-Based Methods

Kernel methods have been extensively used to solve classification problems,
where a training set {xn, tn}N

n=1 is given, so that tn denotes the class label
of training example xn. The class labels tn are discrete, e.g. t ∈ {0, 1} for bi-
nary classification, and they describe the class to which each training example
belongs. Kernel methods, are based on a mapping function φ(x) that maps each
training vector to a higher dimensional feature space. Then, inner products be-
tween training examples are computed in this new feature space, by evaluating
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the corresponding kernel function K(xi, xj) = φ(xi)T φ(xj). This kernel function,
provides a measure of similarity between training examples.

Recently, there is much interest in sparse kernel methods, such as the Sup-
port Vector Machine (SVM) and the Relevance Vector Machine (RVM). These
methods are called sparse because, after training with the full dataset, they
make predictions using only a small subset of the available training vectors. In
SVM sparsity is achieved through suitable weight regularization, while RVM is
a Bayesian model and sparsity is a consequence of the use of a suitable sparse
prior distribution on the weights. The remaining training vectors, which are used
for predictions are called support vectors (SV) in the case of SVM and relevance
vectors (RV) in the case of RVM. The main reason why sparse kernel methods
are so interesting and effective, is that during training, they automatically es-
timate the complexity of the dataset, and thus they have good generalization
performance on both simple and complex datasets. In simple datasets only few
support/relevance vectors will be used, while in more difficult datasets the num-
ber of support/relevance vectors will increase. Furthermore, making predictions
using only a small subset of the initial training examples is typically much more
computationally efficient.

3.1 Support Vector Machine

The support vector machine (SVM) classifier, is a kernel classifier that aims at
finding an optimal hyperplane which separates data points of two classes. This
hyperplane is optimal in the sense that it maximizes the margin between the
hyperplane and the training examples. The SVM classifier [10] makes decisions
for an unknown input vector, based on the sign of the decision function:

ySV M (x) =
N∑

n=1

wnK(x, xn) + b (4)

After training, most of the weights w are set to exactly zero, thus predictions are
made using only few of the training vectors, which are the support vectors. As-
suming that the two classes are labeled with ’−1’ and ’1’, so that tn ∈ {−1, 1},
the weights w = (w1, . . . , wN ) are set by solving the following quadratic pro-
gramming problem:

min
w,b,ξ

1
2
wT w + C

N∑

n=1

ξn (5)

subject to tn(wT φ(xn) + b) ≥ 1− ξn

ξn ≥ 0

where the auxiliary variables ξ = (ξ1, . . . , ξN ) have been introduced to deal with
non-separable datasets.

SVM makes predictions based on the decision function of eq. (4). Positive
values of the decision function (ySV M(x) > 0) correspond to class ’1’, while neg-
ative values (ySV M (x) < 0) correspond to class ’−1’. Furthermore, the absolute
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value of the decision function provides a measure of the certainty of the decision.
Values near zero, correspond to points near the decision boundary and therefore
may be unreliable, while large values of the decision function should correspond
to reliable classifications. In practice, we first obtain probabilistic predictions by
applying the sigmoid function σ(x) = 1/(1 + exp(−x)) to the SVM outputs and
then compute the reliability measure as:

RESV M = |2σ(ySV M (x)) − 1|. (6)

3.2 Relevance Vector Machine

The relevance vector machine (RVM) classifier [11], is a probabilistic extension
of the linear regression model, which provides sparse solutions. It is analogous to
the SVM, since it computes the decision function using only few of the training
examples, which are now called relevance vectors. However training is based on
different objectives.

The RVM model y(x; w) is the output of a linear model with parameters
w = (w1, . . . , wN )T , with application of a sigmoid function for the case of clas-
sification:

yRV M (x) = σ(
N∑

n=1

wnK(x, xn)), (7)

where σ(x) = 1/(1+ exp(−x)). In the RVM, sparseness is achieved by assuming
a suitable prior distribution on the weights, specifically a zero-mean, Gaussian
distribution with distinct inverse variance αn for each weight wn:

p(w|α) =
N∏

n=1

N(wn|0, α−1
n ). (8)

The variance hyperparameters α = (α1, . . . , αN ) are assumed to be Gamma
distributed random variables:

p(α) =
N∏

n=1

Gamma(αn|a, b). (9)

The parameters a and b are assumed fixed and usually they are set to zero
(a = b = 0), which provides sparse solutions.

Given a training set {xn, tn}N
n=1 with tn ∈ {0, 1} training in RVM is equivalent

to compute the posterior distribution p(w, α|t). However, since this computation
is intractable, a quadratic approximation log p(w|t, α) ≈ (w−μ)T Σ−1(w−μ) is
assumed and we compute matrix Σ and vector μ as:

Σ = (ΦT BΦ + A)−1 (10)
μ = ΣΦT Bt̂ (11)

with the N × N matrix Φ defined as [Φ]ij = K(xi, xj), A = diag(α1, . . . , αN ),
B = diag(β1, . . . , βN ), βn = yRV M(xn)[1− yRV M (xn)] and t̂ = Φμ+B−1(t− y).
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The parameters α are then set to the values αMP that maximize the logarithm
of the following marginal likelihood

L(α) = log p(α|t) = −1
2
[
N log 2π + log|C|+ tT C−1t

]
, (12)

with C = B−1 + ΦA−1ΦT . This, gives the following update formula:

αn =
1− αnΣnn

μ2
n

(13)

The RVM learning algorithm iteratively evaluates formulas (10),(11) and (13).
After training, the value of yRV M (x) = y(x; μ) can be used to estimate the

reliability of the classification decision for input x. Values close to 0.5 are near the
decision boundary and therefore are unreliable classifications, while values near
0 and near 1 should correspond to reliable classifications. In our experiments,
we used the reliability measure

RERV M = |2yRV M(x) − 1|, (14)

which takes values near 0 for unreliable classifications and near 1 for reliable
classifications.

3.3 Incremental Relevance Vector Machine

An interesting property of the RVM model that can be exploited in the trans-
ductive approach, is that it can be trained incrementally, as proposed in [12].
The proposed incremental algorithm, initially assumes an empty model, that
does not use any basis functions. Then, it incrementally adds, deletes and re-
estimates basis functions, until convergence. It is based on the observation that
the marginal likelihood, see eq. (12), can be decomposed as:

L(α) = L(α−n) + l(αn), (15)

where L(α−n) does not depend on αn and

l(αn) = log αn − log(αn + sn) +
q2
n

αn + sn
, (16)

with sn = φT
nC−1

−nφn and qn = φT
nC−1

−n t̂. Here, C−n = B−1 +
∑

i�=n α−1
n φnφT

n

denotes the matrix C without the contribution of the n-th basis function, so
that C = C−n + α−1

n φnφT
n , sn is the “sparseness” factor that measures how

sparse the model is and qn is the “quality” factor that measures how well the
model fits the observations. Based on this decomposition, analysis of l(αn) shows
that it is maximized when

αn = s2
n

q2
n−sn

if q2
n > sn (17)

αn = ∞ if q2
n ≤ sn (18)
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Based on this result, the following algorithm is proposed in [12]:

1. Initially assume an empty model, set an = ∞, for all n
2. Select a training point xn and compute the corresponding basis function φn

as well as sn and qn.
(a) if q2

n > sn and αn = ∞ add the basis function to the model, using eq.
(17) to set αn

(b) if q2
n > sn and αn < ∞ re-estimate αn

(c) if q2
n <= sn remove the basis function from the model, set αn = ∞

3. Compute Σ and μ, using eq. (10) and (11)
4. Repeat from step 2, until convergence.

4 Evaluation of Transductive Reliability Estimations

In this section, we apply the transductive reliability methodology in a series of
classification problems and compare the performance of transductive reliability
estimations, with respect to the reliability measures that are directly computed
based on SVM and RVM outputs. Transductive reliability estimations, are ob-
tained following the procedure described in Section 2. After training the model
and computing its output for a new test point x∗, we add this test point to the
training set with the predicted label and retrain the model. Transductive reli-
ability estimations are obtained by measuring the distance between the output
distributions of the two models.

In the case of RVM we also considered a modification, where we used the
incremental training algorithm to obtain fast transductive reliability estimations.
Specifically, after adding the new training point x∗, instead of retraining from
scratch, we can use the incremental algorithm to continue training the previous
model. This is much more computationally efficient, and in the experiments it
appears to provide better performance than the standard approach of training
from scratch.

In order to evaluate the performance of the reliability estimation methods, we
apply the following procedure. We perform leave-one-out cross-validation on the
available training dataset and compute a prediction for the class of each training
point and a reliability estimation (RE) of this prediction. Afterwards, we can
discriminate reliable and unreliable classifications by selecting a threshold (T )

Table 1. Information gain of SVM/RVM reliability estimations and transductive reli-
ability estimations

Method hepatitis new-thyroid wdbc leukemia

RESV M 0.106 0.083 0.036 0.054
TRESV M 0.120 0.092 0.047 0.073
RERV M 0.109 0.068 0.091 0.089
TRERV M 0.178 0.062 0.094 0.062
TRERV M(inc) 0.133 0.072 0.106 0.107
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for the reliability measure. Using an ideal reliability measure all correct classi-
fications should be labeled reliable (RE > T ), while all incorrect classifications
should be labeled unreliable. Thus, an evaluation of the reliability measure is
obtained by computing the percentage of correct and reliable classifications, and
the percentage of incorrect reliable classifications. Plotting these percentages,
for many values of the threshold, produces an ROC curve, which illustrates the
performance of the reliability estimation method.

Although the ROC describes the overall effectiveness of a reliability measure,
in practice, a single threshold value has to be used. This is selected by maximizing
the information gain, as explained in Section 2. The information gain may also
be used to compare the performance of several reliability measures. Table 1
shows the information gain that is achieved by: i) using directly the SVM/RVM
reliability estimates RESV M and RERV M , ii) using the transduction reliability
principle (TRE). Results are shown for three medical datasets from the UCI
machine learning repository and the leukemia bioinformatics dataset. It is clear
that when SVM is used, transduction provides better information gain for all
datasets. The same happens with incremental RVM, while when typical RVM is
used, transduction is better in two of the three cases.

5 Diagnosis of Coronary Artery Disease

Coronary artery disease (CAD) is the most important cause of mortality in all
developed countries. It is caused by diminished blood flow through coronary
arteries due to stenosis or occlusion. CAD produces impaired function of the
heart and finally the necrosis of the myocardium – myocardial infarction.

In our study we used a dataset of 327 patients (250 males, 77 females) with per-
formed clinical and laboratory examinations, exercise ECG, myocardial scintig-
raphy and coronary angiography because of suspected CAD. The features from
the ECG an scintigraphy data were extracted manually by the clinicians. In
228 cases the disease was angiographically confirmed and in 99 cases it was ex-
cluded. 162 patients had suffered from recent myocardial infarction. The patients
were selected from a population of approximately 4000 patients who were exam-
ined at the Nuclear Medicine Department, University Clinical Centre, Ljubljana,

Table 2. Comparison of the performance of expert physicians and machine learning
classification methods for the CAD dataset

Positive Negative
Method Reliable Errors AUC Reliable Errors AUC

Physicians 0.72 0.04 0.790 0.45 0.07 0.650
RESV M 0.65 0.00 0.903 0.30 0.04 0.566
TRESV M 0.76 0.02 0.861 0.57 0.08 0.672
RERV M 0.63 0.004 0.842 0.54 0.06 0.729
TRERV M 0.67 0.013 0.767 0.49 0.05 0.702
TRERV M(inc) 0.69 0.004 0.850 0.54 0.07 0.720
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Fig. 2. ROC curves for the transduction reliability measures for SVM and incremental
RVM, using the CAD dataset and considering separately the positive and negative
examples

Slovenia, between 1991 and 1994. We selected only the patients with complete
diagnostic procedures (all four levels) [13].

Physicians apply a stepwise diagnostic process and use Bayes law to compute
a posterior probability of disease, based on some diagnostic tests and a prior
probability according to the age, gender and type of chest pain for each patient.
Reliable diagnoses are assumed to be those whose posterior probability is over
0.90 (positive) or under 0.10 (negative). We considered treating the problem by
training an SVM or an RVM classifier and using the transductive reliability prin-
ciple to estimate the reliability of each classification. For evaluation purposes,
we performed leave-one-out cross-validation, and for each example we predicted
a class and a reliability of the classification. We then splitted classifications to
reliable and unreliable by computing the threshold that maximizes the informa-
tion gain and measured the percentage of reliable diagnoses (with the reliability
measure above some threshold), and errors made in this process (percentage of
incorrectly diagnosed patients with seemingly reliable diagnoses).

The results of these experiments are summariazed in Table 2 and furthermore,
in Figure 2 ROC curves are plotted separately for the cases of positive and
negative examples. The area (AUC) under these curves, which measures the



46 D. Tzikas, M. Kukar, and A. Likas

overall reliability performace, is also shown in Table 2. It can be observed that
when the transduction principle is used along with SVM and incremental RVM,
better performance is achieved compared to physicians.

Specifically, notice that the transductive SVM, has reliably detected 0.76%
of the positive examples and 0.57% of negative examples, which is much better
than the percentages of physicians, which are 0.72% and 0.45% respectively More
important is the fact that at the same time, transductive SVM made less errors
in positive examples, specifically 0.02% when the physicians made 0.04%. In
medical diagnosis applications, it is very important that this error rate is kept
at very small values. The error rate in negative examples, is 0.08% for physicians
and 0.07% for transductive SVM, which is comparable.

When using the RVM model, the error rate of positive examples is dropped
even lower to 0.004%. Although, the percentage of reliably detected positive
examples (0.63%) is somewhat less than the one of physicians (0.72%), it is im-
proved to 0.69% when using the incremental transduction principle. The RVM
percentage of reliably detected negative examples is slightly higher than physi-
cians, while the error rate of negative examples is about the same. Notice, that
non-incremental transduction with RVM did not perform as expected, probably
because relevant vectors are very sensitive to small changes of the training set.

6 Conclusions

We applied the transduction methodology for reliability estimation on sparse
kernel-based classification methods. Experiments on medical datasets from the
UCI repository and a bioinformatics gene expression dataset, indicate that, when
used with kernel-based classifiers, transductive reliability estimations are more
accurate than simple reliability measures based on the outputs of kernel classi-
fiers. Furthermore, we applied the transductive methodology in the problem of
CAD diagnosis, achieving better reliability estimation performance compared to
the standard physicians procedure.
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Abstract. We propose a new method for learning the parameters of a
Bayesian network with qualitative influences. The proposed method aims
to remove unwanted (context-specific) independencies that are created
by the order-constrained maximum likelihood (OCML) estimator. This is
achieved by averaging the OCML estimator with the fitted probabilities
of a first-order logistic regression model. We show experimentally that
the new learning algorithm does not perform worse than OCML, and
resolves a large part of the independencies.

1 Introduction

In recent work, Wittig and Jameson [8], Altendorf et al. [1] and Feelders and
van der Gaag [4] have shown that the use of qualitative influences can improve
the probability estimates in Bayesian networks, in case relatively few obser-
vations are available. Apart from improvement of the parameter estimates, in
[8] and [4] it was argued that networks with probability estimates that reflect
the qualitative knowledge specified by the domain experts are less likely to ex-
hibit counterintuitive reasoning behaviour and are therefore more likely to be
accepted.

Feelders and van der Gaag [4] provide a simple algorithm, based on the isotonic
regression, to compute the order-constrained maximum likelihood (OCML) esti-
mates for networks of binary variables. A disadvantage of the OCML estimates is
that in case order reversals are present in the unconstrained estimates, these are
resolved by setting blocks of violating estimates equal to their weighted average.
This results in unwanted (context-specific) independencies in the network.

We present a new estimator that aims at enforcing strict inequalities between
parameters, thereby avoiding the creation of unwanted independencies in the
network. This is achieved by combining the OCML with a first-order logistic
regression model.

The paper is organized as follows. In section 2 we introduce the necessary
notation, and introduce some important concepts that are used throughout the
paper. In section 3 we discuss parameter learning with qualitative influences,
and explain the shortcoming of the order-constrained maximum likelihood esti-
mator.Subsequently, in section 4, we discuss our compound estimator that aims
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to remove this shortcoming. This new parameter learning method is evaluated
experimentally in section 5. We end with conclusions.

2 Preliminaries

A Bayesian network is a concise representation of a joint probability distribu-
tion over a collection of stochastic variables V = (V1, . . . , Vm); in the sequel, we
assume all variables to be binary, taking the value 0 or 1. The network consists of
an acyclic directed graph in which each node corresponds to a variable and the
arcs capture the dependence structure of the distribution; the network further
includes a number of conditional probabilities, or parameters, P (Vi | Vpa(i))
for each variable Vi given its parents Vpa(i) in the graph. The graphical struc-
ture and associated probabilities together represent a unique joint probability
distribution over the variables involved, which is factorised according to

Pr(V) =
m∏

i=1

P (Vi | Vpa(i))

In estimating the parameters from data, we only have to consider one node
and its parents at a time. To simplify notation, we will do so in the sequel. Let
X = (X1, . . . , Xk) be the parents of a variable Y , and let X = X1×X2×. . .×Xk =
{0, 1}k consist of vectors x = (x1, x2, . . . , xk) of values for the k variables in X,
that is, X is the set of all parent configurations of Y . Slightly abusing terminology,
we sometimes say that Xi occurs or is present if it has the value one. We write
Xa for the sub-vector of X containing the variables Xj for j ∈ a, where a is a
subset of K = {1, . . . , k}. We further write X−a for XK\a, and X−i for XK\{i},
where i ∈ K. Furthermore, we write for example n(y,x) to denote the number
of observations in the data with Y = y and X = x.

A qualitative influence [7] between two variables expresses how observing a
value for the one variable affects the probability distribution for the other vari-
able. A positive influence of Xi on Y along an arc Xi → Y means that the
occurrence of Xi does not decrease the probability that Y occurs, regardless of
any other direct influences on Y , that is

P (y = 1|xi = 1,x−i) ≥ P (y = 1|xi = 0,x−i), (1)

where x−i is any configuration of the parents of Y other than Xi. Since the
inequality in (1) is not strict, the technically correct, if somewhat awkward,
verbal description is does not decrease rather than increases. In this paper, the
distinction between the two is crucial however. Similarly, there is a negative
influence of Xi on Y along an arc Xi → Y if the occurrence of Xi does not
increase the probability that Y occurs. From now on we assume, without loss of
generality, that all qualitative influences are positive.

Finally, we say a positive qualitative influence is strict if the occurrence of Xi

increases the probability that Y occurs, regardless of any other direct influences
on Y , that is

P (y = 1|xi = 1,x−i) > P (y = 1|xi = 0,x−i). (2)
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3 Parameter Learning with Qualitative Influences

As we saw in the previous section, qualitative influences correspond to certain
constraints between the parameters in the Conditional Probability Table (CPT)
of Y . In earlier work, several methods have been proposed to exploit these con-
straints in estimating the parameters from data. In [4] it was shown how the
order-constrained maximum likelihood (OCML) estimates, using the non-strict
inequalities in (1), can be computed using the isotonic regression. The problem
with these estimates is that they create unwanted (context-specific) independen-
cies. This is illustrated by the following example.

Consider a node Y with two parents, X1 and X2, both with a positive influence
on Y . Suppose we observe the data given in the left part of Table 1.

Table 1. Data for example. In the left table, each cell gives n(y = 1, x)/n(x). The
middle table gives the unconstrained ML estimates of P (Y = 1|X1, X2). The table on
the right gives the order-constrained ML estimates.

X1/X2 0 1

0 4/10 1/3
1 6/10 18/20

X1/X2 0 1

0 0.40 0.33
1 0.60 0.90

X1/X2 0 1

0 0.38 0.38
1 0.60 0.90

The first row of the unconstrained estimates contains an order reversal, since
it is decreasing rather than increasing. The OCML estimator resolves this order
violation by taking the weighted average of the two violating cells, and assigning
this value to the both of them. Hence the value

4 + 1
10 + 3

=
5
13

≈ 0.38

in the first row of the rightmost table in Table 1. The result is a context-specific
independence: according to the OCML estimates, Y is independent of X2 for
X1 = 0. This is probably not what the expert intended when she specified a
positive influence of X2 on Y . This raises the question if it wouldn’t be better
to enforce the strict inequalities given in equation (2) rather than the non-strict
inequalities given in (1). The problem is that for the strict inequalities, the
OCML estimates do not exist in case one of the order constraints is violated. This
can be intuitively appreciated by looking at the solution obtained in the example
above. In the strict version the likelihood would keep increasing as we make the
difference between the violating estimates P̂ (Y = 1|0, 0) and P̂ (Y = 1|0, 1)
smaller and smaller.

In order to enforce strict inequalities, Altendorf et al. [1] specified a minimum
margin between two “contiguous” parameters, that is, (1) was replaced by

P (y = 1|xi = 1,x−i) ≥ P (y = 1|xi = 0,x−i) + εx−i , (3)

where εx−i is the minimum difference required, which in general may depend
on the values at which the remaining parents are held constant. The problem
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with this approach is the selection of appropriate values for the εx−i . One could
try to elicit these margins from domain experts. Experience shows however that
experts have a hard time in reliably providing such numerical information. If
they had been very good at it, we might just as well have asked them for the
CPTs straight away. Another possibility is to specify some fixed value for the
margin, that is applied to every pair of contiguous parameters. This option is
chosen in [1]. The problem is, however, that the choice of value for ε becomes
arbitrary.

Therefore, we propose a different, data-driven, approach to obtain strict in-
equalities between contiguous parameters. This approach is presented in the next
section.

4 Learning with Strict Qualitative Influences

The basic idea of our approach is to try to remove unwanted independencies by
combining the OCML estimates with estimates produced by a logistic regression
model. A similar idea in the different setting of numeric isotonic regression with
just one predictor variable was proposed by Wright [9]. For the logistic regression
model, we assume the log-odds is linear in the parent variables, that is

log
{

P (Y = 1|X)
P (Y = 0|X)

}

= β0 +
k∑

i=1

βiXi (4)

The important property of this model is that βi > 0 corresponds to a strictly
positive influence of Xi on Y . The proposed compound estimator P̂ ∗ is given by

P̂ ∗(Y |X) = γP̂LR(Y |X) + (1− γ)P̂OCML(Y |X),

where 0 < γ < 1, and P̂LR(Y |X) are the fitted probabilities of a first-order
logistic regression model. By taking the weighted average with the fitted logistic
regression probabilities, we enforce strict inequalities as long as the signs of the
logistic regression coefficients are positive. There are still two loose ends in this
proposal

1. What if one or more of the logistic regression coefficient estimates are nega-
tive instead of positive?

2. How do we choose the value of γ, the weight of the logistic regression model?

The first issue is addressed as follows. We start by estimating the full model,
i.e. including all parents of Y as predictors. Then we check if there are any
parents having a negative coefficient. If so, these parents are removed from the
model, and the model is re-estimated with the remaining parents. If necessary,
this procedure is repeated until only parents with positive coefficients remain.
Note that the removal of Xi from the model (i.e. setting βi = 0) results in

P̂LR(y = 1|xi = 1,x−i) = P̂LR(y = 1|xi = 0,x−i), (5)
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for every configuration x−i. Hence, if the OCML estimates satisfy

P̂OCML(y = 1|xi = 1,x−i) = P̂OCML(y = 1|xi = 0,x−i), (6)

for one or more configurations x−i, these equalities will not be resolved by the
compound estimator.

With respect to the second issue, we should keep in mind that the primary
reason to combine the OCML estimates with the logistic regression model is to
obtain data-driven margins between contiguous parameters. We do not want its
weight to become too big, unless the LR model actually gives a good fit of the
data. Therefore, we chose to let γ depend on the p-value of the observed deviance
of the fitted logistic regression model, under the null hypothesis that the logistic
regression model is the correct model specification.

To illustrate the basic idea of our compound estimator, we continue the ex-
ample of section 3. Recall that the OCML estimates created an independence
between X2 and Y for X1 = 0. To remove this independence, we combine the
OCML estimates with those obtained by fitting a logistic regression model with
Y as the response, and X1 and X2 as the predictors. This results in positive
coefficients for both X1 (β̂1 = 1.47) and X2 (β̂2 = 1.09). Note that X2 still has
a positive coefficient, because the order reversal in the first row of the observed
relative frequencies is more than compensated by the increasing second row. If
the second row were also decreasing, X2 would have had a negative coefficient,
and consequently the problem could not be fixed by the compound estimator.
The fitted probabilities of the logistic regression model are given in Table 2.

Table 2. Fitted probabilities of the logistic regression model estimated on the data in
Table 1 on the left. On the right, the fitted probabilities of the compound estimator.

X1/X2 0 1

0 0.32 0.59
1 0.68 0.86

X1/X2 0 1

0 0.37 0.43
1 0.62 0.89

To compute the compound estimator, we still have to determine the weight
of the LR model. Here we take γ equal to the p-value; in the experimental
section, we also consider two other possibilities. We compute the p-value by
using the fact that the deviance has approximately a χ2

n−k′−1 distribution under
the null hypothesis, where k′ is the number of remaining variables in the logistic
regression model. Hence, we look up the area of the tail of this distribution to
the right of the observed deviance, and find a p-value of approximately 0.26.
Hence the compound estimator becomes

P̂ ∗(Y = 1|X1, X2) = 0.26 · P̂LR(Y = 1|X1, X2) + 0.74 · P̂OCML(Y = 1|X1, X2),

The compound estimates are given in Table 2 on the right.We have achieved our
goal: the unwanted equality in the first row has been resolved, and the margin
between the two contiguous probabilities has been determined by the data.
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5 Experiments

To evaluate the proposed parameter learning method, we performed experi-
ments on both artificial data and real data. We are interested in two aspects of
performance:

1. How good are the estimates produced by our compound estimator?
2. How many of the unwanted independencies in the OCML estimates are fixed,

in the sense that our compound estimator turns them into strict inequalities?

Our objective is to remove as many unwanted independencies as possible, while
retaining high quality estimates.

5.1 Artificial Data

In order to test our approach under various circumstances, we set up several
environments to measure the performance of the proposed compound estimator.
Parameters in these test environments are

1. The number of parent nodes: 2, 3 and 4.
2. The size of the data sample: 20, 50 and 100 for 2 or 3 parents; 50, 100 and

200 for 4 parents.
3. The margins between the conditional probabilities P (Y = 1|X) for contigu-

ous values of X of the underlying true distribution: small and large.

To elaborate on the third point: we suspect that with small margins, reversed
signs of the coefficients in the LR model will occur more often, leading to a lower
fraction of resolved independencies. An example of small and large margins for
the case of two parents is given in Figure 1.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

0.3

0.3

0.40.2
0.2

0.5

0.5

0.8

Fig. 1. Small and large margins between P (Y = 1|X) for contiguous values of X. The
first number below each parent configuration x denotes P (Y = 1|x) corresponding
to the small margin; the second number corresponds to the large margin. Arrows be-
tween the parent configurations denote direct precedence in the order (“contiguous”
configurations).
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We considered three definitions of the LR weight γ in the experiments:

1. γ1 = p-value: Just the p-value as discussed in section 4.
2. γ2 = min(1, 2|X|

n · p-value).
3. γ3 = min(0.1, 10 · p-value): The p-value is multiplied by 10, to avoid γ being

too small. Also it has an upper threshold of 0.1 to avoid too large values. Here
an extra factor is included, which decreases as the sample size n (relative
to the number of parameters) increases. It has a maximum of 1 and goes
to 0 as n goes to infinity. This definition is inspired by the view that with
more data, the ML (and OCML) estimates become more reliable, requiring
a smaller weight for the LR model.

It is clear that none of these three weighting methods has any deep theoretical
justification, so the experiments will have to make clear which one works best.

In our experiments we fitted five different models: P̂ML (the unconstrained
maximum likelihood estimates), P̂OCML (the order-constrained maximum like-
lihood estimates), and P̂ ∗

i , i = 1, 2, 3 (the compound estimates, using γi). To
determine the quality of the estimates, we computed the Kullback-Leibler (KL)
divergence between the true and the fitted distributions. We applied the Laplace
correction to avoid possible infinity values. We performed a 1000 replications of
the experiment, and averaged the Kullback-Leibler divergence over these 1000
replications. The results are given in Tables 3, 4, and 5, for 2,3, and 4 parents
respectively.

Table 3. Results for artificial data, 2 parent nodes

ntrain KLML KLOCML KLC1 KLC2 KLC3 fixratio

distribution with large margins

20 0.0598 0.0436 0.0692 0.0448 0.0443 63%
50 0.0319 0.0277 0.0278 0.0277 0.0274 89%
100 0.0185 0.0172 0.017 0.0172 0.017 99%

distribution with small margins

20 0.0576 0.0342 0.0539 0.0353 0.0345 31%
50 0.0305 0.0197 0.0207 0.0197 0.0195 43%
100 0.0184 0.0129 0.013 0.0129 0.0128 49%

There are several general observations clearly shown in the tables. First of
all, the ML model has the worst performance. Second, the compound estimator
using γ1 does not perform well: the LR model becomes too dominant and spoils
the estimates. Third, the OCML model and the models using γ2 and γ3 are close,
but rather consistently the compound estimator using γ3 performs the best by a
small margin. Finally, as the sample size increases, the differences in performance
become smaller. Summarizing, we can say that with the right weight (γ3) for the
LR model, the compound estimator works well under all circumstances we have
studied in the experiments.
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Table 4. Results for artificial data, 3 parent nodes

ntrain KLML KLOCML KLC1 KLC2 KLC3 fixratio

distribution with large margins

20 0.0718 0.0325 0.0719 0.0381 0.0339 58%
50 0.0514 0.0286 0.0299 0.0287 0.0282 78%
100 0.0329 0.0223 0.0219 0.0223 0.0212 91%

distribution with small margins

20 0.0702 0.0324 0.0868 0.037 0.0332 42%
50 0.0519 0.0231 0.025 0.0233 0.0228 48%
100 0.0325 0.0163 0.0163 0.0163 0.0157 62%

Table 5. Results for artificial data, 4 parent nodes

ntrain KLML KLOCML KLC1 KLC2 KLC3 fixratio

distribution with large margins

50 0.0716 0.0314 0.0348 0.0313 0.0302 84%
100 0.0522 0.0265 0.0256 0.0263 0.0247 93%
200 0.0336 0.0213 0.0206 0.0212 0.0196 99%

distribution with small margins

50 0.0732 0.0312 0.038 0.0304 0.0289 59%
100 0.0516 0.0215 0.0212 0.0213 0.02 71%
200 0.0321 0.0143 0.0138 0.0143 0.0132 85%

The next question is, what fraction of the unwanted independencies created
by OCML are resolved by the compound estimator. This fraction is referred to
in the following as the fixratio. As we expected, the fixratio is higher for large
margins, and it also increases with the sample size. Table 6 shows the average
fixratios.

Table 6. Average fixratios

distribution average fixratio

large margins 84%
small margins 54%

overall 69%

5.2 Real Data

We also performed experiments on five real datasets, four of which have been
taken from the UCI repository [2]. All non-binary variables were made binary
by making approximately equal-frequency bins of 0 and 1-values. We used the
dependent variable and a selection from the attributes to construct a small
Bayesian network fragment. To determine the sign of the influences, we used the
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Table 7. Average log-loss for respectively the Windsor housing, Wisconsin breast
cancer, Pima Indians, Haberman survival, and CPU performance datasets for different
sizes of the training sample

ntrain LML LOCML LC1 LC2 LC3 fixratio

20 0.5888 0.5667 0.7624 0.5689 0.5645 70%
(± 0.043) (± 0.026) (± 0.859) (± 0.032) (± 0.027)

50 0.5539 0.5428 0.5634 0.5427 0.5418 89%
(± 0.027) (± 0.02) (± 0.123) (± 0.02) (± 0.02)

100 0.5354 0.5293 0.5305 0.5291 0.5284 99%
(± 0.018) (± 0.015) (± 0.022) (± 0.015) (± 0.015)

20 0.2999 0.2944 1.1285 0.2677 0.2853 5%
(± 0.03) (± 0.023) (± 1.13) (± 0.031) (± 0.024)

50 0.2415 0.2396 0.4461 0.2357 0.237 82%
(± 0.017) (± 0.015) (± 0.435) (± 0.015) (± 0.015)

100 0.2189 0.2182 0.2458 0.2175 0.2174 91%
(± 0.011) (± 0.011) (± 0.156) (± 0.01) (± 0.01)

20 0.6526 0.6164 0.6901 0.6198 0.6151 54%
(± 0.042) (± 0.024) (± 0.332) (± 0.03) (± 0.025)

50 0.6223 0.6024 0.6085 0.6023 0.6011 72%
(± 0.027) (± 0.018) (± 0.067) (± 0.018) (± 0.018)

100 0.6008 0.5916 0.5909 0.5914 0.5904 79%
(± 0.018) (± 0.013) (± 0.014) (± 0.013) (± 0.013)

20 0.6157 0.5872 0.7017 0.5883 0.5843 41%
(± 0.043) (± 0.028) (± 0.572) (± 0.034) (± 0.03)

50 0.5837 0.5648 0.5735 0.5647 0.5635 47%
(± 0.027) (± 0.019) (± 0.057) (± 0.02) (± 0.02)

100 0.5657 0.5539 0.5547 0.5538 0.5531 56%
(± 0.026) (± 0.021) (± 0.026) (± 0.021) (± 0.021)

20 0.499 0.4883 0.7738 0.4877 0.4849 56%
(± 0.036) (± 0.025) (± 0.9) (± 0.032) (± 0.026)

50 0.4728 0.4673 0.5248 0.4665 0.466 84%
(± 0.028) (± 0.024) (± 0.249) (± 0.026) (± 0.025)

100 0.4605 0.4579 0.4603 0.4572 0.4568 97%
(± 0.038) (± 0.038) (± 0.061) (± 0.038) (± 0.038)

information attached to the datasets, previous articles [1] and [3], and common-
sense. We did not look at the data itself to determine the signs. The data sets
used are:

– Windsor housing data: used as an example by Koop [5]. It has 546 examples
of sale prices of houses dependent on different variables. We take the sale
price as the child variable, and lot size and presence or absence of a basement
and air conditioning as parent nodes with positive influences.

– Wisconsin Breast Cancer Database [6]: 699 instances of data about the class
(benign or malignant) of breast tumors. We used the class as the child vari-
able and clump thickness, single epithelial cell size and bland chromatin as
parent nodes, all with positive influences.
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Table 8. Average fixratios per dataset

dataset average fixratio

Windsor housing 86%
Wisconsin breast cancer 60%
Pima indians diabetes 68%
Haberman survival 48%
CPU performance 79%

Overall 68%

Table 9. Average fixratios per sample size

sample size average fixratio

20 45%
50 75%
100 84%

Overall 68%

– Pima Indians diabetes : 768 cases of medical data on Pima Indians. The class
variable denotes whether the person has diabetes or not. We used the body
mass index, diabetes pedigree function and age of the person as parent nodes,
all with positive influences.

– Haberman’s Survival Data: 306 cases from a study on the survival of patients
who had undergone surgery for breast cancer. Survival of the patient is the
child variable. The patient’s age, year of operation and number of nodes
detected are the parent nodes, again all with positive influences.

– CPU Performance Data: 209 cases of characteristics and performance of var-
ious types of computer CPU models. Performance is the dependent variable.
Machine cycle time, minimum main memory and maximum main memory
are the parent nodes. Machine cycle time has a negative influence, the other
two parents have a positive influence.

Like with the artificial data, we performed a thousand replications of the
experiment. Table 7 shows the results. For all estimators, we computed the
average log-loss and its standard error on the data not used for training as
follows:

Ltest =
−
∑ntest

i=1 log P̂ (yi|xi)
ntest

,

where ntest is the number of observations in the test set. The results are fairly in
line with those obtained on the artificial data. Model C3 (the compound model
using γ3) seems to perform slightly better than the other estimators again. Ta-
ble 8 shows the average fixratios per dataset. Table 9 shows the average fixratios
per sample size. The overall fixratio of the compound estimator is about 68%,
and increases with the sample size.
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6 Conclusions

We have proposed a new method for learning the parameters of a Bayesian
network with qualitative influences. This method aims at avoiding unwanted
independencies created by the order-constrained maximum likelihood (OCML)
estimator. To obtain data-driven margins between contiguous parameters, the
OCML estimates are combined with the fitted probabilities of a first-order logis-
tic regression model. We have shown that the new compound estimator performs
well, and is able to remove a large fraction of the independencies created by the
OCML estimator.
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Abstract. In this paper we explore the use of Tree Augmented Naive
Bayes (TAN) in regression problems where some of the independent vari-
ables are continuous and some others are discrete. The proposed solution
is based on the approximation of the joint distribution by a Mixture of
Truncated Exponentials (MTE). The construction of the TAN structure
requires the use of the conditional mutual information, which cannot
be analytically obtained for MTEs. In order to solve this problem, we
introduce an unbiased estimator of the conditional mutual information,
based on Monte Carlo estimation. We test the performance of the pro-
posed model in a real life context, related to higher education manage-
ment, where regression problems with discrete and continuous variables
are common.

1 Introduction

In real life applications, it is common to find problems in which the goal is to
predict the value of a variable of interest depending on the values of some other
observable variables. If the variable of interest is discrete, we are faced with a
classification problem, whilst if it is continuous, it is usually called a regression
problem. In classification problems, the variable of interest is called class and
the observable variables are called features, while in regression frameworks, the
variable of interest is called dependent variable and the observable ones are called
independent variables.

Bayesian networks [8,12] have been previously used for classification and regres-
sion purposes. More precisely, naive Bayes models have been applied to regression
problems under the assumption that the joint distribution of the independent vari-
ables and the dependent variable is multivariate Gaussian [7]. If the normality as-
sumption is not fulfilled, the problem of regression with naive Bayes models has
been approachedusing kernel densities to model the conditional distribution in the
Bayesian network [5], but the obtained results are poor. Furthermore, the use of
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kernels introduce a high complexity in the model, which can be problematic, espe-
cially because standard algorithms for carrying out the computations in Bayesian
networks are not valid for kernels. A restriction of Gaussian models is that they
only apply to scenarios in which all variables are continuous.

Motivated by the application to higher education management, we are inter-
ested in regression problems where some of the independent variables are discrete
while the others are continuous. Therefore, the joint distribution is not multi-
variate Gaussian in any case, due to the presence of discrete variables. Recently,
a naive Bayes regression model based on the approximation of the joint distri-
bution by a Mixture of Truncated Exponentials (MTE) was proposed [11]. The
MTE model has been successfully used in the context of Bayesian networks as a
solution to the presence of discrete and continuous variables simultaneously [9],
showing good features as an exact model as well as an approximation of other
probability distributions [2,3].

In this paper we study the extension of the naive Bayes regression model based
on MTEs [11] to tree augmented naive Bayes (TAN) structures, in which the
existence of dependencies between the independent variables is allowed. In order
not to use a misleading terminology, from now on we will refer to the observable
variables as features, even if we are in a regression context.

The rest of the paper is organised as follows. The use of Bayesian networks
for regression is explained in section 2. The MTE model is described in section
3. Section 4 is devoted to our proposal of a TAN model for regression and its
application to prediction in higher education is contained in section 5. Further
experimental tests are described in section 6. The paper ends with conclusions
in section 7.

2 Bayesian Networks and Regression

Throughout this paper, random variables will be denoted by capital letters, and
their values by lowercase letters. In the multi-dimensional case, boldfaced char-
acters will be used. The domain of the variable X is denoted by ΩX. A Bayesian
network for a set of variables X = {X1, . . . , Xn} is a directed acyclic graph
where each variable is assigned to one node, which has associated a conditional
distribution given its parents [8,12]. An arc linking two variables indicates the ex-
istence of probabilistic dependence between both of them. An important feature
of Bayesian networks is that the joint distribution over X factorises according
to the d-separation criterion as follows [12]:

p(x1, . . . , xn) =
n∏

i=1

p(xi|pa(xi)) , (1)

where Pa(Xi) denotes the set of parents of variable Xi and pa(xi) is a configu-
ration of values of them.

A Bayesian network can be used as a regression model for prediction purposes.
Assume that Y is the dependent variable and X1, . . . , Xn are the features. Then,
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in order to predict the value for Y for observed features x1, . . . , xn the conditional
density

f(y|x1, . . . , xn) , (2)

is computed and a numerical prediction for Y is given using the corresponding
mean, the median or the mode.

As f(y|x1, . . . , xn) is proportional to f(y) × f(x1, . . . , xn|y), solving the re-
gression problem requires to specify an n dimensional density for X1, . . . , Xn

given Y . Using the factorisation determined by the Bayesian network, this prob-
lem is simplified depending on the structure of the network. The extreme case
is the so-called naive Bayes structure [4,6], where all the feature variables are
considered independent given the dependent variable. This kind of structure is
represented in figure 1. This is the model used for regression in [11].

Y

X1 X2 Xn
· · ·

Fig. 1. Naive Bayes structure for regression. The observable variables are assumed to
be independent given Y .

The reason to make the strong independence assumption behind naive Bayes
models is that it is compensated by the reduction of the number of parameters
to be estimated from data, since in this case, it holds that

f(y|x1, . . . , xn) = f(y)
n∏

i=1

f(xi|y) , (3)

which means that, instead of one n-dimensional conditional densities, n one-
dimensional conditional densities are estimated.

A compromise between the strong independence assumption and the complex-
ity of the model to be estimated from data is the so-called tree augmented naive
Bayes (TAN) [6]. In this kind of models, some more dependencies are allowed, ex-
panding the naive Bayes structure by permitting each feature to have one more
parent besides Y . In other words, the features form a tree (see figure 2).

In any case, regardless of the structure employed, it is necessary that the
joint distribution for Y, X1, . . . , Xn follows a model that allows the computation
of the density in equation (2). Furthermore, taking into account our application
purposes, it should be a model that allows the simultaneous presence of dis-
crete and continuous variables. We think that the model that best fulfills these
requirements is the MTE model, explained next.
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Y

X1 X2 Xn

Fig. 2. A TAN structure for regression. Some more dependencies between the features
are allowed.

3 The MTE Model

The MTE model can be defined as follows [9]:

Definition 1. (MTE potential) Let X be a mixed n-dimensional random vector.
Let Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the discrete and continuous parts
of X, respectively, with c + d = n. We say that a function f : ΩX �→ R

+
0 is a

Mixture of Truncated Exponentials potential (MTE potential) if one of the next
conditions holds:

i. Y = ∅ and f can be written as

f(x) = f(z) = a0 +
m∑

i=1

ai exp

⎧
⎨

⎩

c∑

j=1

b
(j)
i zj

⎫
⎬

⎭
(4)

for all z ∈ ΩZ, where ai, i = 0, . . . , m and b
(j)
i , i = 1, . . . , m, j = 1, . . . , c

are real numbers.
ii. Y = ∅ and there is a partition D1, . . . , Dk of ΩZ into hypercubes such that

f is defined as
f(x) = f(z) = fi(z) if z ∈ Di ,

where each fi, i = 1, . . . , k can be written in the form of equation (4).
iii. Y 
= ∅ and for each fixed value y ∈ ΩY, fy(z) = f(y, z) can be defined as in

ii.

Example 1. The function f defined as

f(z1, z2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 + e3z1+z2 + ez1+z2 if 0 < z1 ≤ 1, 0 < z2 < 2
1 + ez1+z2 if 0 < z1 ≤ 1, 2 ≤ z2 < 3
1
4

+ e2z1+z2 if 1 < z1 < 2, 0 < z2 < 2
1
2

+ 5ez1+2z2 if 1 < z1 < 2, 2 ≤ z2 < 3

is an MTE potential since all of its parts are MTE potentials.
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Definition 2. (MTE density) An MTE potential f is an MTE density if

∑

y∈ΩY

∫

ΩZ

f(y, z)dz = 1 .

A conditional MTE density can be specified by dividing the domain of the condi-
tioning variables and specifying an MTE density for the conditioned variable for
each configuration of splits of the conditioning variables. Moral et al. [9] propose
a data structure to represent MTE potentials, which is specially appropriate for
this kind of conditional densities: The so-called mixed probability trees or mixed
trees for short. The formal definition is as follows:

Definition 3. (Mixed tree) We say that a tree T is a mixed tree if it meets the
following conditions:

i. Every internal node represents a random variable (discrete or continuous).
ii. Every arc outgoing from a continuous variable Z is labeled with an inter-

val of values of Z, so that the domain of Z is the union of the intervals
corresponding to the arcs emanating from Z.

iii. Every discrete variable has a number of outgoing arcs equal to its number of
states.

iv. Each leaf node contains an MTE potential defined on variables in the path
from the root to that leaf.

Mixed trees can represent MTE potentials defined by parts. Each entire branch
in the tree determines one sub-region of the space where the potential is defined,
and the function stored in the leaf of a branch is the definition of the potential
in the corresponding sub-region.

4 Constructing a TAN Using MTEs

The construction of a TAN from a database can be decomposed into two tasks:

1. Determining the structure of the network (i.e., finding the dependencies be-
tween the features).

2. Estimating the MTE densities corresponding to the obtained structure.

Regarding the second task, existing algorithms for estimating the parameters
of an MTE density are based on least squares estimation [15,17]. The construc-
tion of conditional densities is studied in [10], following ideas used for the con-
struction of classification trees [14]. In this work we use the algorithm proposed
in [10] for learning the conditional distributions, with the parameter learning
approach described in [15,17].

With respect to obtaining the dependence structure among the features, the
goal is to find a tree structure containing them [6], so that the links of the tree
connect the variables with higher degree of dependence. This task can be solved
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using a variation of the method proposed in [1]. The idea is to start with a fully
connected graph, labeling the links with the conditional mutual information
between the connected features given the independent variable (Y ). Afterwards,
the tree structure is obtained by computing the maximum spanning tree of the
initial labeled graph. The detailed algorithm could be as follows:

Algorithm TAN mte
INPUT: A database D with variables Y, X1, . . . , Xn.
OUTPUT: A TAN with root variable Y and features X1, . . . , Xn, with joint
distribution of class MTE.

1. Construct a complete graph C with nodes X1, . . . , Xn.
2. Label each link (Xi, Xj) with the conditional mutual information between

Xi and Xj given Y , i.e.,

I(Xi, Xj |Y ) =
∫∫∫

f(xi, xj , y) log
f(xi, xj |y)

f(xi|y)f(xj |y)
dxidxjdy . (5)

3. Let T be the maximum spanning tree obtained from C.
4. Direct the links in T in such a way that no node has more than one parent.
5. Construct a new network G with nodes Y, X1, . . . , Xn and the same links as
T .

6. Insert the links Y → Xi, i = 1, . . . , n in G.
7. Estimate an MTE density for Y , and a conditional MTE density for each

Xi, i = 1, . . . , n given its parents in G.
8. Let P be the set of estimated densities.
9. Let TAN be a Bayesian network with structure G and distributions P .

10. Return TAN.

The main problem for implementing the algorithm above is the computation
of the conditional mutual information defined in equation (5). The problem has
been addressed for the Conditional Gaussian model [13], but only in classification
contexts, i.e., with variable Y being discrete. For MTEs, the integral in equation
(5) cannot be computed in closed form. Therefore, we propose to estimate it in
a similar way as in [11] for the marginal mutual information. Our proposal is
based on the estimator given in the next proposition.

Proposition 1. Let Xi, Xj and Y be continuous random variables with joint MTE
density f(xi, xj , y). Let (X(1)

i , X
(1)
j , Y (1)), . . . , (X(m)

i , X
(m)
j , Y (m)) be a sample of

size m drawn from f(xi, xj , y). Then,

Î(Xi, Xj |Y ) =
1
m

m∑

k=1

(
log f(X(k)

i |X(k)
j , Y (k))− log f(X(k)

i |Y (k))
)

(6)

is an unbiased estimator of I(Xi, Xj|Y ).
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Proof

E[Î(Xi, Xj |Y )] = E

[
1
m

m∑

k=1

(
log f(X(k)

i |X(k)
j , Y (k))− log f(X(k)

i |Y (k))
)
]

= E[log f(Xi|Xj, Y )]− E[log f(Xi|Y )]

= E[log f(Xi|Xj, Y )− log f(Xi|Y )] = E

[

log
f(Xi|Xj , Y )

f(Xi|Y )

]

=
∫∫∫

f(xi, xj , y) log
f(Xi|Xj , Y )

f(Xi|Y )
dxidxjdy

=
∫∫∫

f(xi, xj , y) log
f(Xi|Xj , Y )f(Xj |Y )

f(Xi|Y )f(Xj |Y )
dxidxjdy

=
∫∫∫

f(xi, xj , y) log
f(Xi, Xj |Y )

f(Xi|Y )f(Xj |Y )
dxidxjdy

= I(Xi, Xj|Y ) .

Proposition 1 can be extended for the case in which Xi or Xj are discrete by
replacing the corresponding integral by summation.

Therefore, the procedure for estimating the conditional mutual information
consists of getting a sample from f(xi, xj , y) and evaluating expression (6). Sam-
pling from an MTE density is described in [16].

5 Application to Prediction in Higher Education
Management

We have tested the performance of the TAN regression model based on MTEs
in three practical problems related to higher education management, described
in [11]. Our goal is to compare the accuracy of the TAN model versus the naive
Bayes model used in [11].

Problems 1 and 2 consist of predicting the performance rate and success rate,
respectively, for a given degree program. The study is restricted to a database
with information about all the degree programs in the university of Almeŕıa in
years 2001 to 2004.

The performance rate is defined as

pr =
no

ns
(7)

where ns is the number of credits (blocks of 10 hours of confrontation lectures)
of all the subjects selected by the students in a given year, and no is the number
of credits actually obtained by the students at the end of the same year.

The success rate is defined as

sr =
no

ne
(8)

where no is as defined above and ne is the number of credits for which the
students actually took the final exam.
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In problems 1 and 2, we have the following feature variables:
– Degree: The degree program.
– OptRate: Rate of credits that can be obtained with subjects freely chosen

by the student.
– OptOffer: Number of free-election subjects offered (in credits) divided by

the number of free-election credits that the student has to obtain to complete
the degree.

– Prt: Ratio between the amount of practical credits and total amount of
credits required in a degree program.

– SmallGroups: Ratio between the number of classes with no more than 20
students and the global number of classes in each subject.

– BigGroups: Ratio between the number of classes with not less than 80
students and the global number of classes in each subject.

– Dedication: Number of credits coursed by the students divided by the num-
ber of students.

– Give-upRate: Rate of students that leave the university without having
finished the degree program.

– Rate S-L: Number of students per lecturer.
– PhD: Fraction of credits in the degree given by lecturers owning the PhD

degree.
Problem 3 consists of predicting the number of students in a given subject

in year 2005. In this case, we have a database containing information about all
the subjects offered at the University of Almeŕıa from years 2001 to 2004. The
variables considered in this case are:

– Degree: The degree program.
– Period: Part of the degree (first or second half) in which the subject is

located.
– Subject.
– Course: The course (year) in which the subject is located.
– AXX: Number of students in the given subject in year XX, ranging from

01 to 04.
– prXX: Performance rate for the given subject in year XX, ranging from 01

to 04.

Notice that in problems 1 and 2 the variable of interest is continuous, and
in problem 3 it is discrete, but given its high number of possible values, its
probability function cannot be handled appropriately using a probability table.
Regarding the features, some of them are continuous while some others are
discrete or even qualitative.

In the experiments reported in this section, we divided the domain of the con-
tinuous variables into 4 intervals, and all the necessary densities are represented
using the so-called 5-parameter MTE:

f(x) = a0 + a1e
a2x + a3e

a4x, α < x < β . (9)

The reason to use the 5-parameter MTE is that it has shown its ability to fit
the most common distributions accurately, while the model complexity and the
number of parameters to estimate is low [3].
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The accuracy of the models is measured using the mean squared error between
the actual value y and its prediction ŷ, which is computed from a test set different
to the one used for training the model:

rmse =

√
√
√
√ 1

m

m∑

i=1

(yi − ŷi)2 . (10)

The predictions have been carried out using the mean and the median of
the posterior distributions for Y . The results are reported in tables 1 and 2,
where NB(mean) and NB(median) indicate the naive Bayes model predicting
with the mean and the median respectively, and TAN(mean) and TAN(median)
refer to the TAN model. The errors in table 1 have been computed dividing the
database in two parts, one of them containing the 70% of the records in the
original database, selected at random, which is used for training the model, and
the other containing the remaining 30%, which is used for testing the model. The
errors reported in table 2 have been computed using 10-fold cross validation.

Table 1. Results for the case study in terms of rmse measured in a hold-out set

Problem 1 Problem 2 Problem 3

NB(mean) 0.1378 0.0679 33.3896
NB(median) 0.1458 0.0714 34.2925
TAN(mean) 0.1324 0.0597 29.3093
TAN(median) 0.1349 0.0609 29.9508

Table 2. Results for the case study in terms of rmse computed by 10-fold cross
validation

Problem 1 Problem 2 Problem 3

NB(mean) 0.0981 0.0441 36.9315
NB(median) 0.0989 0.0449 37.3671
TAN(mean) 0.0913 0.0418 35.5599
TAN(median) 0.0967 0.0452 36.7030

The results obtained in this analysis support the validity of the TAN model
based on MTE for this case study. In the three problems considered, the TAN
provides the best accuracy, especially in the case of predicting the number of
students in a subject. This quantity is very difficult to predict, since the possible
number of students in a subject varies from 0 to close to 500.

6 Further Experimental Evaluation

In the experiments reported in section 5 we found out that the way in which the
links between the features are directed in step 4 of algorithm TAN mte, influences
the accuracy of the model. In fact, the results reported in tables 1 and 2 refer to
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the best TAN models found, but for some orientations of the links it is possible
to obtain TAN models that provide errors slightly higher than the naive Bayes.
The difference in accuracy can be explained taking into account that the order of
the variables in a mixed tree representing a conditional distribution determines
the partition of the database which is used to estimate each one of the leaves
in the tree. Therefore, small differences may appear if the data is scarce. In
order to test this hypothesis, we carried out one more experiment using a larger
database with more variables. More precisely, we used the bodyfat database
from StatLib (www.statlib.org), which consists of 252 records containing data
about 15 continuous variables. The results obtained measuring the error using
10-fold cross validation are reported in table 3. The errors for the TAN models
correspond to the best model found. In this case, the differences between the
different link orientations are only slight and in any case, the accuracy of the
tan is always superior to the accuracy of the naive Bayes.

Table 3. Results for the bodyfat database computed by 10-fold cross validation

NB(mean) NB(median) TAN(mean) TAN(median)

rmse 11.9997 12.2897 10.7441 11.2067

7 Conclusions

We have introduced a TAN model for regression based on the use of MTEs. The
aim was to approach a problem in which existing methods are difficult to apply
due to the presence of discrete and continuous variables simultaneously. The
obtained results are promising, as the TAN is competitive in the three problems
considered. Also in the test case considered outside the scope of our main case
study, the performance of the TAN model improves the naive Bayes.

In the future we expect to carry out a deeper analysis of the performance of
our TAN model in other problems. Also, we think that it can be improved by
incorporating a variable selection scheme. As we pointed out in section 6, the way
in which the variables are ordered when directing the maximum spanning tree
associated with the TAN can affect the accuracy of the final model, since the set
of conditional densities to estimate may vary. This fact can be very important,
especially in problems where the database is small, since the available data for
estimating some conditionals can be scarce. Therefore, we think that a method
for selecting an optimal order should be sought.
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Abstract. The Denclue algorithm employs a cluster model based on
kernel density estimation. A cluster is defined by a local maximum of
the estimated density function. Data points are assigned to clusters by
hill climbing, i.e. points going to the same local maximum are put into
the same cluster. A disadvantage of Denclue 1.0 is, that the used hill
climbing may make unnecessary small steps in the beginning and never
converges exactly to the maximum, it just comes close.

We introduce a new hill climbing procedure for Gaussian kernels,
which adjusts the step size automatically at no extra costs. We prove
that the procedure converges exactly towards a local maximum by re-
ducing it to a special case of the expectation maximization algorithm.
We show experimentally that the new procedure needs much less itera-
tions and can be accelerated by sampling based methods with sacrificing
only a small amount of accuracy.

1 Introduction

Clustering can be formulated in many different ways. Non-parametric methods
are well suited for exploring clusters, because no generative model of the data is
assumed. Instead, the probability density in the data space is directly estimated
from data instances. Kernel density estimation [15,14] is a principled way of doing
that task. There are several clustering algorithms, which exploit the adaptive
nature of a kernel density estimate. Examples are the algorithms by Schnell
[13] and Fukunaga [5] which use the gradient of the estimated density function.
The algorithms are also described in the books by Bock [3] and Fukunaga [4]
respectively. The Denclue framework for clustering [7,8] builds upon Schnells
algorithm. There, clusters are defined by local maxima of the density estimate.
Data points are assigned to local maxima by hill climbing. Those points which
are assigned to the same local maximum are put into a single cluster.

However, the algorithms use directional information of the gradient only. The
step size remains fixed throughout the hill climbing. This implies certain disad-
vantages, namely the hill climbing does not converges towards the local maxi-
mum, it just comes close, and the number of iteration steps may be large due to
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many unnecessary small steps in the beginning. The step size could be heuris-
tically adjusted by probing the density function at several positions in the di-
rection of the gradient. As the computation of the density function is relatively
costly, such a method involves extra costs for step size adjustment, which are
not guaranteed to be compensated by less iterations.

The contribution of this article is a new hill climbing method for kernel density
estimates with Gaussian kernels. The new method adjusts the step size automat-
ically at no additional costs and converges towards a local maximum. We prove
this by casting the hill climbing as a special case of the expectation maximiza-
tion algorithm. Depending on the convergence criterium, the new method needs
less iterations as fixed step size methods. Since the new hill climbing can be
seen as an EM algorithm, general acceleration methods for EM, like sparse EM
[11] can be used as well. We also explore acceleration by sampling. Fast Density
estimation [17] can be combined with our method as well but is not tested in
this first study.

Other density based clustering methods beside Denclue, which would benefit
from the new hill climbing, have been proposed by Herbin et al [6]. Variants of
density based clustering are Dbscan [12], Optics [1], and followup versions,
which, however, do not use a probabilistic framework. This lack of foundation
prevents the application of our new method there.

Related approaches include fuzzy c-means [2], which optimized the location of
cluster centers and uses membership functions in a similar way as kernel functions
are used by Denclue. A subtle difference between fuzzy c-means and Denclue

is, that in c-means the membership grades of a point belonging to a cluster are nor-
malized, s.t. the weights of a single data point for all clusters sum to one. This ad-
ditional restriction makes the clusters competing for data points. Denclue does
not have such restriction. The mountain method [16] also uses similar member-
ship grades as c-means. It finds clusters by first discretizing the data space into
a grid, calculates for all grid vertices the mountain function (which is compara-
ble to the density up to normalization) and determines the grid vertex with the
maximal mountain function as the center of the dominant cluster. After effects of
the dominant cluster on the mountain function are removed, the second dominant
cluster is found. The method iterates until the heights of the clusters drop below
a predefined percentage of the dominant cluster. As the number of grid vertices
grow exponentially in high dimensional data spaces, the method is limited to low
dimensional data. Niche clustering [10] uses a non-normalized density function as
fitness function for prototype-based clustering in a genetic algorithm. Data points
with high density (larger than a threshold) are seen as core points, which are used
to estimate scale parameters similar to the smoothing parameter h introduced in
the next section.

The rest of the paper is structured as follows. In section 2, we briefly introduce
the old Denclue framework and in section 3 we propose our new improvements
for that framework. In section 4, we compare the old and the new hill climbing
experimentally.
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Fig. 1. Kernel density estimate for one-dimensional data and different values for the
smoothing parameter h

2 DENCLUE 1.0 Framework for Clustering

The Denclue framework [8] builds on non-parametric methods, namely kernel
density estimation. Non-parametric methods are not looking for optimal param-
eters of some model, but estimate desired quantities like the probability density
of the data directly from the data instances. This allows a more direct definition
of a clustering in contrast to ‘parametric methods, where a clustering corre-
sponds to an optimal parameter setting of some high-dimensional function. In
the Denclue framework, the probability density in the data space is estimated
as a function of all data instances xt ∈ X ⊂ R

d, d ∈ N, t = 1, . . . , N . The in-
fluences of the data instances in the data space are modeled via a simple kernel
function, e.g. the Gaussian kernel K(u) = (2π)−

d
2 · exp

[
−u2

2

]
. The sum of all

kernels (with suitable normalization) gives an estimate of the probability at any
point x in the data space p̂(x) = 1/(Nhd)

∑N
t=1 K

(
x−xt/h

)
. The estimate p̂(x)

enjoys all properties like differentiability like the original kernel function. The
quantity h > 0 specifies to what degree a data instance is smoothed over data
space. When h is large, an instance stretches its influence up to more distant
regions. When h is small, an instance effects only the local neighborhood. We
illustrate the idea of kernel density estimation on one-dimensional data as shown
in figure 1.

A clustering in the Denclue framework is defined by the local maxima of
the estimated density function. A hill-climbing procedure is started for each
data instance, which assigns the instance to a local maxima. In case of Gaussian
kernels, the hill climbing is guided by the gradient of p̂(x), which takes the form

∇p̂(x) =
1

hd+2N

N∑

t=1

K

(
x− xt

h

)

· (xt − x). (1)

The hill climbing procedure starts at a data point and iterates until the density
does not grow anymore. The update formula of the iteration to proceed from
x(l) to x(l+1) is

x(l+1) = x(l) + δ
∇p̂(x(l))

‖∇p̂(x(l))‖2
. (2)
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Fig. 2. Example of a Denclue clustering based on a kernel density estimate and a
noise threshold ξ

The step size δ is a small positive number. In the end, those end points of the
hill climbing iteration, which are closer than 2δ are considered, to belong to the
same local maximum. Instances, which are assigned to the same local maximum,
are put into the same cluster.

A practical problem of gradient based hill climbing in general is the adaptation
of the step size. In other words, how far to follow the direction of the gradient?
There are several general heuristics for this problem, which all need to calculate
p̂(x) several times to decide a suitable step size.

In the presence of random noise in the data, the Denclue framework provides
an extra parameter ξ > 0, which treats all points assigned to local maxima x̂
with p̂(x̂) < ξ as outliers. Figure 2 sketches the idea of a Denclue clustering.

3 DENCLUE 2.0

In this section, we propose significant improvements of the Denclue 1.0 frame-
work for Gaussian kernels. Since the choice of the kernel type does not have large
effects on the results in the typical case, the restriction on Gaussian kernels is
not very serious. First, we introduce a new hill climbing procedure for Gaussian
kernels, which adjust the step size automatically at no extra costs. The new
method does really converge towards a local maximum. We prove this property
by casting the hill climbing procedure as an instance of the expectation maxi-
mization algorithm. Last, we propose sampling based methods to accelerate the
computation of the kernel density estimate.

3.1 Fast Hill Climbing

The goal of a hill climbing procedure is to maximize the density p̂(x). An alter-
native approach to gradient based hill climbing is to set the first derivative of
p̂(x) to zero and solve for x. Setting (1) to zero and rearranging we get

x =
∑N

t=1 K
(

x−xt

h

)
xt

∑N
t=1 K

(
x−xt

h

) (3)
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Fig. 3. (Left) Gradient hill climbing as used by Denclue 1.0, (right) Step size adjusting
hill climbing used by Denclue 2.0

Obviously, this is not a solution for x, since the vector is still involved into the
righthand side. Since x influences the righthand side only through the kernel,
the idea is to compute the kernel for some fixed x and update the vector on the
lefthand side according to formula (3). This give a new iterative procedure with
the update formula

x(l+1) =
∑N

t=1 K
(

x(l)−xt

h

)
xt

∑N
t=1 K

(
x(l)−xt

h

) (4)

The update formula can be interpreted as a normalized and weighted average of
the data points and the weights of the data points depend on the influence of
their kernels on the current x(l). In order to see that the new update formula
makes sense it is interesting to look at the special case N = 1. In that case,
the estimated density function consists just of a single kernel and the iteration
jumps after one step to x1, which is the maximum.

The behavior of Denclues 1.0 hill climbing and the new hill climbing pro-
cedure is illustrated in figure 3. The figure shows that the step size of the new
procedure is adjusted to the shape of the density function. On the other hand,
an iteration of the new procedure has the same computational costs as one of
the old gradient based hill climbing. So, adjusting the step size comes at no
additional costs. Another difference is, that the hill climbing of the new method
really converges towards a local maximum, while the old method just comes
close.

Since the new method does not need the step size parameter δ, the assignment
of the instances to clusters is done in a new way. The problem is to define
a heuristic, which automatically adjusts to the scale of distance between the
converged points.

A hill climbing is started at each data point xt ∈ X and iterates until the
density does not change much, i.e. [f̂(x

(l)
t )−f̂(x

(l−1)
t )]/f̂(x

(l)
t ) ≤ ε. An end point

reached by the hill climbing is denoted by x∗
t = x

(l)
t and the sum of the k last
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Fig. 4. (Left) Assignment to a local maximum, (right) Ambiguous assignment. The
points M and M ′ denote the true but unknown local maxima.

step sizes is st =
∑k

i=1 ‖x
(l−i+1)
t − x

(l−i)
t ‖2. The integer k is parameter of the

heuristic. We found that k = 2 worked well for all experiments. Note, that the
number of iterations may vary between the data points, however, we restricted
the number of iterations to be larger than k. For appropriate ε > 0, it is safe
to assume that the end points x∗

t are close to the respective local maxima.
Typically, the step sizes are strongly shrinking before the convergence criterium
is met. Therefore, we assume that the true local maximum is within a ball around
x∗

t of radius st. Thus, the points belonging to the same local maximum have end
points x∗

t and x∗
t′ , which are closer than st + st′ . Figure 4 left illustrates that

case.
However, there might exists rare cases, when such an assignment is not unique.

This happens when for three end points x∗
t , x

∗
t′ and x∗

t′′ hold the following condi-
tions ‖x∗

t−x∗
t′‖ ≤ st+st′ and ‖x∗

t−x∗
t′′‖ ≤ st+st′′ but not ‖x∗

t′−x∗
t′′‖ ≤ st′ +st′′ .

In order to solve the problem, the hill climbing is continued for all points, which
are involved in such situations, until the convergence criterium is met for some
smaller ε (a simple way to reduce ε is multiply it with a constant between zero
and one). After convergence is reached again, the ambiguous cases are rechecked.
The hill climbing is continued until all such cases are solved. Since further itera-
tions causes the step sizes to shrink the procedure will stop at some point. The
idea is illustrated in figure 4 right.

However, until now it is not clear why the new hill climbing procedure con-
verges towards a local maximum. In the next section, we prove this claim.

3.2 Reduction to Expectation Maximization

We prove the convergence of the new hill climbing method by casting the maxi-
mization of the density function as a special case of the expectation maximiza-
tion framework [9]. When using the Gaussian kernel we can rewrite the kernel
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density estimate p̂(x) in the form of a constrained mixture model with Gaussian
components

p(x|μ, σ) =
N∑

t=1

πtN (x|μt, σ) (5)

and the constraints πt = 1/N, μt = xt (μ denotes a vector consisting of all
concatenated μt), and σ = h. We can think of p(x|μ, σ) as a likelihood of x
given the model determined by μ and σ. Maximizing log p(x|μ, σ) wrt. x is not
possible in a direct way. Therefore, we resort to the EM framework by introducing
a hidden bit variable z ∈ {0, 1}N with

∑N
t=1 zt = 1 and

zt =

{
1 if the density at x is explained by N (x|μt, σ) only
0 else

. (6)

The complete log-likelihood is log p(x, z|μ, σ) = log p(x|z, μ, σ)p(z) with p(z) =
∏N

t=1 πzt
t and p(x|z, μ, σ) =

∏N
t=1N (x|μt, σ)zt .

In contrast to generative models, which use EM to determine parameters of
the model, we maximize the complete likelihood wrt. x. The EM-framework
ensures that maximizing the complete log-likelihood maximizes the original log-
likelihood as well. Therefore, we define the quantity

Q(x|x(l)) = E[log p(x, z|μ, σ)|μ, σ, x(l)] (7)

In the E-step the expectation Q(x|x(l)) is computed wrt. to z and x(l) is put
for x, while in the M-step Q(x|x(l)) is taken as a function of x and maximized.
The E-step boils down to compute the posterior probability for the zt:

E[zt|μ, σ, x(l)] = p(zt = 1|x(l), μ, σ) (8)

=
p(x(l)|zt = 1, μ, σ)p(zt = 1|μ, σ)

∑N
t=1 p(x(l)|zt = 1, μ, σ)p(zt = 1|μ, σ)

(9)

=
1/N · N (x(l)|μt, σ)

∑N
t′=1

1/N · N (x(l)|μt′ , σ)
(10)

=
1/N ·K(x(l)−xt

h )
p̂(x(l))

= θt (11)

In the M-step, zt is replaced by the fixed posterior θt, which yields Q(x|x(l)) =
∑N

t=1 θt[log 1/N + logN (x|μt, σ)]. Computing the derivative wrt. x and setting
it to zero yields

∑N
t=1 θtσ

−2(x− μt) = 0 and thus

x(l+1) =
∑N

t=1 θtμt
∑N

t=1 θt

=
∑N

t=1 K(x(l)−xt

h )xt
∑N

t=1 K(x(l)−xt

h )
(12)

By starting the EM with x(0) = xt the method performs an iterative hill climbing
starting at data point xt.
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3.3 Sampling Based Acceleration

As the hill climbing procedure is a special case of the expectation maximization
algorithm, we can employ different general acceleration techniques known for
EM to speed up the the Denclue clustering algorithm.

Most known methods for EM, try to reduce the number of iterations needed
until convergence [9]. Since the number of iterations is typically quite low, that
kind of techniques yield no significant reduction for the clustering algorithm.

In order to speed up the clustering algorithm, the costs for the iterations itself
should be reduced. One option is sparse EM [11], which still converges to the
true local maxima. The idea is to freeze small posteriors for several iterations, so
only the p% largest posteriors are updated in each iteration. As the hill climbing
typically needs only a few iterations we modify the hill climbing starting at the
single point x(0) as follows. All kernels K(x(0)−xt

h ) are determined in the initial
iteration and x(1) is determined as before. Let be U the index set of the p%
largest kernels and L the complement. Then, in the next iterations the update
formula is modified to

x(l+1) =
∑

t∈U K(x(l)−xt

h )xt +
∑

t∈L K(x(0)−xt

h )xt
∑

t∈U K(x(l)−xt

h ) +
∑

t∈L K(x(0)−xt

h )
(13)

The index set U and L can be computed by sorting. The disadvantage of the
method is, that the first iteration is still the same as in the original EM.

The original hill climbing converges towards a true local maximum of the den-
sity function. However, we does not need the exact position of such a maximum.
It is sufficient for the clustering algorithm, that all points of a cluster converge to
the same local maximum, regardless where that location might be. In that light,
it makes sense to simplify the original density function by reducing the data set
to a set of p% representative points. That reduction can be done in many ways.
We consider here random sampling and k-means. So the number of points N is
reduced to a much smaller number of representative points N ′, which are used
to construct the density estimate.

Note that random sampling has much smaller costs as k-means. We investigate
in the experimental section, whether the additional costs by k-means pay off by
less needed iterations or by cluster quality.

4 Experimental Evaluation

We compared the new step size adjusting (SSA) hill climbing method with the old
fixed step size hill climbing. We used synthetic data with normally distributed
16-dimensional clusters with uniformly distributed centers and approximately
same size. Both methods are tuned to find the perfect clustering in the most
efficient way. The total sum of numbers of iterations for the hill climbings of
all data points is plotted versus the number of data points. SSA was run with
different values for ε, which controls the convergence criterium of SSA. Figure 5
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Fig. 5. Number of data points versus the total sum of numbers of iterations

clearly shows that SSA (ε = 0.01) needs only a fraction of the number of iter-
ations of FS to achieve the same results. The costs per iterations are the same
for both methods.

Next, we tested the influence of different sampling methods on the computa-
tional costs. Since the costs per iteration differ for sparse EM, we measure the
costs in number of kernel computations versus sample size. Figure 6(left) shows
that sparse EM is more expensive than random sampling and k-means based
data reduction. The difference between the two latter methods is negligible, so
the additional effort of k-means during the data reduction does not pay off in less
computational costs during the hill climbing. For sample size 100% the methods
converge to the original SSA hill climbing.

For random sampling, we tested sample size versus cluster quality measured
by normalized mutual information (NMI is one if the perfect clustering is found).
Figure 6(right) shows that the decrease of cluster quality is not linear in sample
size. So, a sample of 20% is still sufficient for a good clustering when the dimen-
sionality is d = 16. Larger dimensionality requires larger samples as well as more
smoothing (larger h), but the clustering can still be found.

In the last experiment, we compared SSA, its sampling variants, and k-means
with the optimal k on various real data sets from the machine learning repository
wrt. cluster quality. Table 1 shows average values of NMI with standard deviation
for k-means and sampling, but not for SSA which is a deterministic algorithm.

SSA has better or comparable cluster quality as k-means. The sampling vari-
ants degrade with smaller sample sizes (0.8, 0.4, 0.2), but k-means based data
reduction suffers much less from that effect. So, the additional effort of k-means
based data reduction pays off in cluster quality.

In all experiments, the smoothing parameter h was tuned manually. Currently,
we are working on methods to determine that parameter automatically. In con-
clusion, we proposed a new hill climbing method for kernel density functions,
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Fig. 6. (Left) Sample size versus number of kernel computations, (right) sample size
versus cluster quality (normalized mutual information, NMI).

Table 1. NMI values for different data and methods, the first number in the three
rightmost columns shows the sample size

k-means SSA Random Sampling Sparse EM k-means Sampling
iris 0.69±0.10 0.72 0.8: 0.66±0.05 0.8: 0.68±0.06 0.8: 0.67±0.06

0.4: 0.63±0.05 0.4: 0.60±0.06 0.4: 0.65±0.07
0.2: 0.63±0.06 0.2: 0.50±0.04 0.2: 0.64±0.07

ecoli 0.56±0.05 0.67 0.8: 0.65±0.02 0.8: 0.66±0.00 0.8: 0.65±0.02
0.4: 0.62±0.06 0.4: 0.61±0.00 0.4: 0.65±0.04
0.2: 0.59±0.06 0.2: 0.40±0.00 0.2: 0.65±0.03

wine 0.82±0.14 0.80 0.8: 0.71±0.06 0.8: 0.72±0.07 0.8: 0.70±0.11
0.4: 0.63±0.10 0.4: 0.63±0.00 0.4: 0.70±0.05
0.2: 0.55±0.15 0.2: 0.41±0.00 0.2: 0.58±0.21

which really converges towards a local maximum and adjusts the step size auto-
matically. We believe, that our new technique has some potential for interesting
combinations with parametric clustering methods.

References

1. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: Ordering points
to identify the clustering structure. In: Proceedings SIGMOD’99, pp. 49–60. ACM
Press, New York (1999)

2. Bezdek, J.: Fuzzy Models and Algorithms for Pattern Recognition and Image Pro-
cessing. Kluwer Academic Publishers, Dordrecht (1999)

3. Bock, H.H.: Automatic Classification. Vandenhoeck and Ruprecht (1974)
4. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press,

London (1990)
5. Fukunaga, K., Hostler, L.: The estimation of the gradient of a density function,

with application in pattern recognition. IEEE Trans. Info. Thy. 21, 32–40 (1975)



80 A. Hinneburg and H.-H. Gabriel

6. Herbin, M., Bonnet, N., Vautrot, P.: Estimation of the number of clusters and
influence zones. Pattern Recognition Letters 22, 1557–1568 (2001)

7. Hinneburg, A., Keim, D.: An efficient approach to clustering in large multimedia
databases with noise. In: Proceedings KDD’98, pp. 58–65. AAAI Press (1998)

8. Hinneburg, A., Keim, D.A.: A general approach to clustering in large databases
with noise. Knowledge and Information Systems (KAIS) 5(4), 387–415 (2003)

9. McLachlan, G.J., Krishnan, T.: EM Algorithm and Extensions. Wiley, Chichester
(1997)

10. Nasraoui, O., Krishnapuram, R.: The unsupervised niche clustering algorithm: ex-
tension tomultivariate clusters and application to color image segmentation. In:
IFSA World Congress and 20th NAFIPS International Conference, vol. 3 (2001)

11. Neal, R.M., Hinton, G.E.: A view of the em algorithm that justifies incremental,
sparse, and other variants. In: Learning in graphical models, pp. 355–368. MIT
Press, Cambridge (1999)

12. Sander, J., Ester, M., Kriegel, H.-P., Xu, X.: Density-based clustering in spatial
databases: The algorithm gdbscan and its applications. Data Mining and Knowl-
edge Discovery 2(2), 169–194 (1997)

13. Schnell, P.: A method to find point-groups. Biometrika 6, 47–48 (1964)
14. Scott, D.: Multivariate Density Estimation. Wiley, Chichester (1992)
15. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman

& Hall (1986)
16. Yager, R., Filev, D.: Approximate clustering via the mountain method. IEEE

Transactions on Systems, Man and Cybernetics 24(8), 1279–1284 (1994)
17. Zhang, T., Ramakrishnan, R., Livny, M.: Fast density estimation using cf-kernel

for very large databases. In: Proceedings KDD’99, pp. 312–316. ACM Press, New
York (1999)



Visualising the Cluster Structure of Data

Streams

Dimitris K. Tasoulis1, Gordon Ross2, and Niall M. Adams2

1 Institute for Mathematical Sciences
Imperial College London, South Kensington Campus

London SW7 2PG, United Kingdom
2 Department of Mathematics

Imperial College London, South Kensington Campus
London SW7 2PG, United Kingdom

{d.tasoulis,gordon.ross,n.adams}@imperial.ac.uk

Abstract. The increasing availability of streaming data is a consequence
of the continuing advancement of data acquisition technology. Such data
provides new challenges to the various data analysis communities. Cluster-
ing has long been a fundamental procedure for acquiring knowledge from
data, and new tools are emerging that allow the clustering of data streams.
However the dynamic, temporal components of streaming data provide
extra challenges to the development of stream clustering and associated
visualisation techniques. In this work we combine a streaming clustering
framework with an extension of a static cluster visualisation method, in or-
der to construct a surface that graphically represents the clustering struc-
ture of the data stream. The proposed method, OpticsStream, provides
intuitive representations of the clustering structure as well as the manner
in which this structure changes through time.

1 Introduction

Advances in technology have resulted in an increasing number of application ar-
eas generating streaming data, that is, data obtained by observation of multiple
indefinitely long and time-evolving sequences. These applications areas include
astronomy and earth sciences, telecommunications and network monitoring. In-
formation visualisation techniques have provided a means to help the exploration
of large data sets [4]. As such there is a need to develop visual data analysis meth-
ods that can deal successfully with the challenges arising from the dynamically
changing nature of streaming data.

Clustering is the process of partitioning a data set into homogeneous subsets
called clusters. Since the publication of the first comprehensive study of cluster-
ing algorithms [14], these methods have been applied to a wide variety of fields,
ranging from text mining [6] to genomics [7].

Cluster visualisation for two dimensional data is readily achieved using simple
scatter plots. To handle higher dimensional data most methods try to determine
two- or three-dimensional projections of the data that retain certain properties of

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 81–92, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the high-dimensional clusters. Dendrograms, produced by hierarchical clustering
algorithms, are a popular visualisation techniques despite the quadratic time
required to construct them [9]. However such techniques become difficult to
apply in large, high-dimensional data sets, particularly when the clusters are
not clearly separated. More sophisticated techniques have been developed to
address such issues [3,8].

Although there has been some effort [10] to extend cluster visualisation to
streaming data, the focus has been applications with a relatively stable, pe-
riodically updated environment. In detail they assume a permanent database
to which insertions and deletion operations occur. Moreover, they are designed
with the assumption that all the data can be stored and retrieved whenever it
is required. Furthermore they do not incorporate any forgetting mechanism. As
such, almost all the foundational streaming data problems are not addressed by
such approaches.

In this paper we present an extension of the OPTICS algorithm [3] to the
streaming data model. OPTICS uses a density identification method to create
a one-dimensional cluster-ordering of the data. We will show that embodying
this idea in a stream clustering method can provide new insights into both the
current clustering structure and the structure evolution. This is a critical issue in
this area since the basic assumption of a data stream model is the dynamically
changing nature of the streams. Thus, such an algorithm should have the capacity
to adapt its visualisation medium to rapidly changing dynamics of the sequences.
Finally, scalability in the number of sequences is becoming increasingly desirable,
as data collection technology develops.

The paper proceeds as follows: the next section provides a description of clus-
ter visualisation in static data sets. Stream clustering is described in Section 3,
along with the proposed visualisation method, called OpticsStream. Next, in
Section 4, we demonstrate the behaviour of the OpticsStream with an experi-
mental analysis of both artificial and real data sets. The paper concludes with a
discussion in Section 5.

2 Visualising Clusters in Static Data

Unlike many other procedures, the OPTICS algorithm [3] (Ordering Points To
Identify the Clustering Structure) does not produce an explicit clustering of a
data set, but instead creates an augmented ordering of the data representing
its density-based clustering structure. For medium sized data sets, this cluster-
ordering can be represented graphically, a fact that allows interactive exploration
of the intrinsic clustering structure and thereby offering additional insight into
the distribution of the data

Consider a data set X ⊂ R
d of n vectors (objects), and a metric distance

function dist : X × X → R. Additionally, for each object p ∈ X and a value
ε ∈ R, we define the set Nε(p) = {q ∈ X |dist(p, q) � ε}, as the ε-neighbourhood
of p. ε is a user defined parameter closely related to the application, the distance
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metric and the dimensionality of the data. For more details about reasonable
values for this refer to [12].

The OPTICS point ordering is constructed using two quantities, the “core-
level” and the “reachability-distance”, that are computed for each object p in
the database. These quantities are defined as follows:

Definition 1. (core-level) Let ε ∈ R, μ ∈ N, be user defined parameters and
distμ(p) be the distance from p to its μ-nearest neighbour. The core-level of p,
CLev(p) is defined as:

CLev(p)
{

∞ if |Nε(p)| < μ
distμ(p) otherwise

Where |Nε(p)| is the number of objects from the database in the ε-neighbourhood
of p. μ is the user defined that combined with value of ε, separates the data as
outliers or not. If in the ε-neighbourhood around a point less than μ points
reside then this corresponds to an outlier [12]. Next we define the “reachability-
distance”, for each pair of objects in the database.

Definition 2. (reachability) For two objects p, q in the database the reachability
of p wrt q is defined as RDist(p, q) = max{CLev(p), dist(p, q)}.

Under these definition the cluster ordering of the data is constructed through
the following definition:

Definition 3. (cluster ordering) Let ε ∈ R, μ ∈ N, and CO be a totally ordered
permutation of the n objects of X. Each o ∈ X, is assigned the additional at-
tributes Pos(o), Core(o), and Reach(o), where Pos(o), symbolizes the position
of o in CO. The ordering CO is called a cluster ordering wrt ε and μ if the
following three conditions hold:

1. ∀p ∈ CO : Core(p) = CLev(p)
2. ∀o, x, y ∈ CO : Pos(x) < Pos(o) ∧ Pos(y) > Pos(o) ⇒ RDist(x, y) �

RDist(o, x)
3. ∀p ∈ CO : Reach(p) = inf{RDist(p, o)|o ∈ CO and Pos(o) < Pos(p)}.

In the cluster ordering defined this way each object is positioned in the order-
ing so that it has minimum reachability distance to all preceding objects in the
ordering. The cluster-ordering of a data set can be represented and understood
graphically. In principle, one can see the clustering structure of a data set if the
reachability-distance values r are plotted for each object against the correspond-
ing cluster-ordering CO. An example of a very simple 2-dimensional data set is
depicted in Fig. 1(a). The CO for this dataset is depicted in Fig. 1(b), where in
the y-axis correpsonds to the reachability distance. A detailed description of the
workings of the OPTICS algorithm is given by [3].

3 Stream Clustering

There are a large number of highly efficient and effective clustering methods [9].
However, most are batch methods originally designed for static data and there-
fore relying on the assumption that data are available in a permanent memory
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(a) (b)

Fig. 1. Reachability Distance ordering (right) of a 2-dimensional data set with 4 clus-
ters (left)

structure from which information can be retrieved at any time. Streaming data
is more demanding, requiring a one-pass scan of the data. Thus, many standard
clustering methods are not directly applicable to streaming data. More recent ap-
proaches have focused precisely on the streaming data model – accommodating
both dynamics and the memory limitation issues [5,13].

There are very few methods for stream clustering visualisation. One example
is described by [1], where so-called velocity density estimation is proposed to
provide a visual diagnosis of changes in a data stream. Here, the idea is to
estimate the rate of change (“velocity”) of a kernel density estimate at each
spatial location. This is obviously an extremely computer-intensive procedure.
Moreover, to make the method applicable in greater than two dimensions, a
projection technique is proposed, which increases the computational complexity
of the algorithm still further.

A widely used and important concept in stream clustering is micro-clusters.
These are quantities that try to summarise the data arriving over a continuous
stream. In the next paragraph we present a micro-cluster framework.

3.1 The Micro-clustering Framework

Among the various models developed for data stream clustering the micro-
clustering framework has been successfully employed by various different al-
gorithms [2,5]. In this framework the weight of each data point in the stream
decreases exponentially with time t via a fading function Tλ(t) = 2−λt, where
λ > 0. The parameter λ control the rate that historic data is down-weighted.
The smaller the value of λ, the greater importance is given to historical data. To
this end we can extend both the notions of “core-level” and “reachability” used
in static clustering algorithms [3,12] to the data stream setting.

For a spatio-temporal data set X ′ = {{x1, t1}, . . . , {xn, tn}}, where xi is a
vector and ti is the corresponding time-stamp, a micro-cluster is defined by
the quantities w, c, r, which attempt to summarise information about the data
density of a particular area. Two distinct types of micro-clusters are considered,
based on the values of r, w, and the additional user-defined parameters ε and μ. If
r < ε and w > μ, then the micro-cluster is considered to be a core-micro-cluster,
that accounts for a “dense” region of the data. Otherwise the micro-cluster
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is called an outlier-micro-cluster, that accounts for less dense regions of data.
Formally we can define these micro-clusters as follows:

Definition 4. (core-micro-cluster) A micro-cluster MCt(w, c, r) is defined as
a core-micro-cluster CMCt(w, c, r) at time t for a group of streaming points
{xi, ti}, i = 1, . . . , n, and parameters ε, μ when w � μ and r � ε. Where w =
∑n

i=1 Tλ(ti) be the micro-cluster’s weight, c =
∑n

i=1 xiTλ(ti)

w , be its center and r

its (weighted) mean radius, r =
∑n

i=1
Tλ(ti)‖c−xi‖

w .

The intuition behind the micro-clustering framework is to maintain a description
of the data streams by a list of micro-clusters. As data points are instantiated
at each time step from the stream, they are merged to their nearest micro-
clusters provided that they are sufficiently close. Otherwise new micro-clusters
are spawned in order to merge possible future similar data, and thus capture
the density structure of the stream. The quantities w, c, r, can be incremen-
tally computed for each micro-cluster. Consider a micro-cluster for which no
points were merged between time step tp and the current time tc, where the
point xc is being considered for merging. Thus wtc = 2−λ(tc−tp)wp, where wp

is the weight value at time tp. Incrementally computing c, r involves the use
of two quantities, CF1t = {

∑n
i=1 xi,jTλ(ti)}, for each coordinate j of the data

point xi ∈ R
d, and CF2t = {

∑n
i=1 x2

i,jTλ(ti)}. The quantities CF1t, CF2t can
be incrementally computed at time tc as CF1tc = 2−λ(tc−tp)CF1tc + xc, and
CF2tc = 2−λ(tc−tp)CF2tp + x2

c .
Note that the weight of core-micro-clusters must be greater than or equal to

μ and the radius must be less than or equal to ε, in order to represent “dense”
regions of the data space.

In an evolving data stream the role of clusters and outliers, that is points
that do not participate in clusters, often exchanges. To compensate for this
phenomenon, two types of micro-clusters are used [5]:

– Potential core-micro-clusters, when wc � βμ and r � ε,
– Outlier-micro-clusters, when wc > βμ and r > ε,

where β is a user defined parameter. As described above, the difference be-
tween these micro-clusters relates to the constraints on the weight and the ra-
dius of each micro-cluster. Maintaining two lists; one for the potential core-
micro-clusters, and one for outlier-micro-clusters, and updating them on-line
can provide a density description of the data space, that can be further queried
to provide knowledge of the clustering structure. These two lists are maintained
using the following procedure:

Procedure ListMaintain
1. Initialise two lists PL, OUL; one for the potential core-micro-clusters, and

the other for the outlier-micro-clusters.
2. Each time a new point p = {x, t} arrives do one of the following:

(a) Attempt to merge p into its nearest potential core-micro-cluster cp: If
the resulting micro-cluster has a radius r > ε then the merge is omitted.
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Cluster 1 of core−micro−clusters

points of the data stream
core−micro−clusters

outlier−micro−clusters

outlier−micro−clusters

Cluster 2  of core−micro−clusters

outlier−micro−clusters

Fig. 2. An example of the result of the micro-clustering framework

(b) Attempt to merge p into its nearest outlier-micro-cluster op: if r > ε the
merge is omitted. Otherwise, if the subsequent weight w of op exceeds
μ, then move op to PL.

(c) A new outlier-micro-cluster is created, centered at p.
3. Periodically prune from PL and OUL those micro-clusters for which wc � βμ

and wc � ξ.

Periodic pruning of the micro-clusters can occur sufficiently often such that the
available memory in not exceeded. [5] proposes to conduct this pruning based on a
so called time-span parameter of potential core-micro-clusters. Note also that ξ is a
user-defined parameter that determines the lower limit for the weight of an outlier-
micro-clusters before it is pruned, and its value can be connected with Tp [5].

Following the procedure outlined above, the micro-clusters maintained on-line
capture the dense areas of data streams. An example is demonstrated in Fig. 2.
Around each micro-cluster the ε area is depicted with a dashed circle, while the
computed radius r of each micro-cluster is depicted with a solid circle.

3.2 Stream Cluster Visualisation

We now propose a stream clustering visualisation methodology. This approach
can potentially operate in a real-time environment and can produce a time-
sensitive map representing the clustering structure in an understandable format.
To achieve this, the OPTICS methodology and the micro-clustering framework
described above are combined, to provide a 3-dimensional plot that depicts the
evolution of the stream cluster structure over time.

In short, we apply the concepts behind the OPTICS algorithm to the potential
core-micro-cluster list, translated to the streaming data context. First, we need
to define the core-micro-cluster neighbourhood:

Definition 5. (Micro-cluster neighbourhood) Let ε ∈ R, be a user defined pa-
rameter and PL a potential core-micro-cluster list. Then for a potential core-
micro-cluster cp, we define the micro-cluster neighbourhood of cp, as

N(cp) = {cq ∈ PL|dist(cp, cq) � 3.0ε}.
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The function dist(cp, cq), returns the Euclidean distance between the centers of
cp and cq.

Note that the distance between the centers of two neighbouring micro-clusters is
required to be less than 3 times the ε parameter. Intuitively, this considers micro-
clusters to constitute contiguous high density areas when the distance between
the ε radius spheres around them is less than ε. Although this is a crude way
of defining neighborhoods, it is possible to use other measures that take into
consideration the radius of each micro-cluster. We can also extend the definition
of core-level distance to the micro-cluster framework as follows:

Definition 6. (Micro-cluster core-level) Let ε ∈ R, β ∈ R, μ ∈ N. The core-level
of cp, CLev(cp) is defined as:

CLev(cp) = radius of cp

The difference here is that there is no need to compute core-level of a micro-
cluster from the neighbourhood of cp, as such information has already been in-
corporated into the radius of cp. Both the definitions of micro-cluster reachability
and ordering remain the same as definitions 2 and 3, respectively. Assuming the
existence of a potential micro-cluster list PL we can construct an order list OL
from it by applying the following algorithm:

Procedure StreamOptics
1. While there is still a micro-cluster cp in PL that has a neighbourhood size
|N(cp)| > 1, initialize a list S of all the micro-clusters in N(cp).

2. Remove cp from PL and add to OL.
3. Remove all micro-clusters in N(cp) from PL.
4. For each cl in S, compute RDist(cl, cp).
5. For each cl in S, insert all the micro-clusters in N(cl) to S.
6. Remove from PL all the micro-clusters in S.
7. Remove the object cl from S with the smallest RDist(cl, cp), and insert it

OL , until S is empty.

The changes which occur at each step of the micro-cluster maintenance procedure
produce insertions and deletions into the PL list that should affect only a limited
subset of the ordering in OL. If we employ incremental techniques such as those
proposed in [10], the computational effort to maintain the OL list though time is
very small compared to the reward of the mined information, since this depends
only on the change to the data structure rather than on the dimensionality or
size of the data stream.

In this way the StreamOptics methodology developed here maintains an or-
dered list OL, of core-micro-clusters, based on their reachability distance. To
this end, at each time step, we can use the methodology of OPTICS to produce
a reachability plot that depicts the current micro-cluster structure. By keep-
ing track of every such ordering, we can have a record of how the ordering of
micro-clusters, and hence the clusters in the data steam, are changing in time.
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The reachability plots produced by the OPTICS approach are 2-dimensional.
Since we are tracking how these plots change through time, we consider time
as being an extra dimension and combine these to form a 3-dimensional plot.
Essentially, we combine the reachability “curve” at each time t in order to create
a 3-dimensional surface plot, the reachability surface, RS : T × N → R, where
each point (t, i) depicts the reachability distance of the ith micro-cluster in the
ordering at time t. In order to better visualise the cluster structure represented
by this 3-dimensional surface, we can represent it as a contour plot, to provide
further insight into how the clusters are changing in time.

However we should note that the StreamOptics methodology does not guaran-
tee that the position of the micro-clusters remains the same, even when nothing
changes in the stream. However, this effect is minimized if the the order of the
micro-clusters in PL is re-arranged so that it matches OL. This way when or-
dering is re-constructed the optical changes should be minimal.

4 Experimental Results

We now provide some results produced by StreamOptics, for both synthetic and
real data sets.

4.1 Spawning Clusters

In this section we use the 2-dimensional synthetic data set, Dset2d. It initially
consists of random points drawn sequentially from a finite mixture of two Gaus-
sian distributions randomly placed in [100, 200]2. At time point 2000, we simulate
the spawning of a new cluster by introducing one more Gaussian component into
the model. In Fig 3, we illustrate the results of StreamOptics at two different
time instances. In the top row, 500 data points are drawn from the Gaussian
mixture at times 2000, 2100 and 3000, from left to right, respectively. Clearly
at time 2100 the points instantiated from the newly introduced Gaussian com-
ponent start to have an apparent effect in the mixture. In the second row of
the figure, the reachability surfaces are exhibited, for the time ranges [0, 2000],
and [2000, 4000], from left to right respectively. Finally in the 3rd row the latter
surfaces are exhibited as contour plots. As illustrated, the reachability surface
attains a constant two valey form as long as the clustering structure remains
steady. This is the expected behaviour since nothing is changing in the data
stream. Interestingly, when the new component is introduced, this change af-
fects the surface in both the time and ordering dimensions, since new micro-
clusters are introduced to capture the appearance of the new cluster. Gradually
a new peak is introduced in the reachability surface, that demonstrates the birth
of the new component in the mixture. Finally the surface stabilises again when
the new structure of the data is described adequately. There is some case where
the surface seems to mess the ordering however this does not seem to affect the
acquired knowledge.
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Fig. 3. Dset2d along with the reachability surface produced by StreamOptics for dif-
ferent time instances

4.2 Disappearing Clusters

In this section we apply the algorithm to a case in which clusters disappear. The
simulated data set, Dset5d, consists of 5-dimensional vectors, initially drawn
from a finite mixture of 10 Gaussian distributions randomly positioned in a
closed subset of R

5. From time step 3000, to time step 4000, 7 of the clusters
disappear, gradually every 100 time steps. In Fig. 4, we display a contour plot
of the reachability surface, as in this case it is more informative. The plot shows
that micro-clusters start to disappear. However the surface finally stabilizes,
resulting in a stable plot after time 4500.

4.3 The Forest CoverType Data

To examine the algorithm’s capabilities with real-world data we employ the
Forest CoverType real world data set, obtained from the UCI machine learning
repository [11]. This data set, DsetForest, is comprised of 581012 observations
of 54 attributes, where each observation is labeled as one of seven forest cover
classes. We retain the 10 numerical attributes. In Fig. 5, the reachability surface
is displayed, between time steps 2000 and 2200. Note that there is a peak in
the plot around the 34th-36th micro-cluster in Fig. 5(a). To examine the class
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Fig. 4. The contour plot of the reachability surface produced by StreamOptics for
Dset5d

(a) (b)

(c)

Fig. 5. The results on DsetForest
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correspondence, in Fig. 5(b), the class of each point in the stream between time
steps 2000 and 2200, is plotted against their nearest micro-cluster in the ordering,
using a histogram. The latter figure shows that the correspondence of the classes
changes at the 34th-36th micro-cluster as was anticipated by the peak present in
the same position of the reachability surface. To obtain a wider view of how this
structure evolves over time, in Fig 5(c) the reachability surface between times
2000 and 2500 is shown. Clearly, the data set has a somewhat stable clustering,
mostly embodied in 3 different clusters, that is persistent through time.

5 Concluding Remarks

Clustering, as one of the most fundamental procedures for extracting informa-
tion from data, plays a key role in the understanding of massive data streams.
Clustering methods have recently been extended [2,5,13], to address some of the
problems that emerge with streaming data. However, methods that can visualise
the change of the clustering structure through time have only been investigated
in lower dimensional situations or via projection [1].

In this work, we hybridise a stream clustering framework with an extension of
OPTICS, a successful technique for the visualisation of static clustering [3]. The
resulting method is shown through experimental investigation to provide insight
into both the clustering structure and its evolution in time. The plots produced
by our OpticsStream algorithm allow the user to identify the change in cluster
structure in the case of both emerging and fading clusters. The results are also
evaluated in a real world setting, where a-priori determined class information is
used as a validation measure.
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Abstract. We introduce relational variants of neural topographic maps
including the self-organizing map and neural gas, which allow clustering
and visualization of data given as pairwise similarities or dissimilarities
with continuous prototype updates. It is assumed that the (dis-)similarity
matrix originates from Euclidean distances, however, the underlying em-
bedding of points is unknown.Batch optimization schemes for topographic
map formations are formulated in terms of the given (dis-)similarities and
convergence is guaranteed, thus providing a way to transfer batch opti-
mization to relational data.

1 Introduction

Topographic maps such as the self-organizing map (SOM) constitute a valuable
tool for robust data inspection and data visualization which has been applied in
diverse areas such as telecommunication, robotics, bioinformatics, business, etc.
[16]. Alternative methods such as neural gas (NG) [20] provide an efficient clus-
tering of data without fixing a prior lattice. This way, subsequent visualization
such as multidimensional scaling, e.g. Sammon’s mapping [18,26] can readily be
applied, whereby no prior restriction of a fixed lattice structure as for SOM is
necessary and the risk of topographic errors is minimized. For NG, an optimum
(nonregular) data topology is induced such that browsing in a neighborhood
becomes directly possible [21].

In the last years, a variety of extensions of these methods has been proposed
to deal with more general data structures. This accounts for the fact that more
general metrics have to be used for complex data such as microarray data or
DNA sequences. Further it might be the case that data are not embedded in a
vector space at all, rather, pairwise similarities or dissimilarities are available.

Several extensions of classical SOM and NG to more general data have been
proposed: a statistical interpretation of SOM as considered in [4,14,28,29] allows
to change the generative model to alternative general data models. The resulting
approaches are very flexible but also computationally quite demanding, such that
proper initialization and metaheuristics (e.g. deterministic annealing) become
necessary when optimizing statistical models. For specific data structures such
as time series or recursive structures, recursive models have been proposed as
reviewed e.g. in the article [9]. However, these models are restricted to recursive
data structures with Euclidean constituents. Online variants of SOM and NG
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have been extended to general kernels e.g. in the approaches presented in [24,31]
such that the processing of nonlinearly preprocessed data becomes available.
However, these versions have been derived for kernels, i.e. similarities and (slow)
online adaptation only.

The approach [17] provides a fairly general method for large scale applica-
tion of SOM to nonvectorial data: it is assumed that pairwise similarities of
data points are available. Then the batch optimization scheme of SOM can be
generalized by means of the generalized median to a visualization tool for gen-
eral similarity data. Thereby, prototype locations are restricted to data points.
This method has been extended to NG in [2] together with a general proof of
the convergence of median versions of clustering. Further developments concern
the efficiency of the computation [1] and the integration of prior information if
available to achieve meaningful visualization and clustering [5,6,30].

Median clustering has the benefit that it builds directly on the derivation
of SOM and NG from a cost function. Thus, the resulting algorithms share the
simplicity of batch NG and SOM, its mathematical background and convergence.
However, for median versions, prototype locations are restricted to the set of
given training data which constitutes a severe restriction in particular for small
data sets. Therefore, extensions which allow a smooth adaptation of prototypes
have been proposed e.g. in [7]. In this approach, a weighting scheme is introduced
for the points which represent virtual prototype locations thus allowing a smooth
interpolation between the discrete training data. This model has the drawback
that it is not an extension of the standard Euclidean version and it gives different
results when applied to Euclidean data in a real-vector space.

Here, we use an alternativeway to extendNGto relationaldata givenbypairwise
similarities or dissimilarities, respectively, which is similar to the relational dual
of fuzzy clustering as derived in [12,13]. For a given Euclidean distance matrix or
Gram matrix, it is possible to derive the relational dual of topographic map forma-
tion which expresses the relevant quantities in terms of the given matrix and which
leads to a learning scheme similar to standard batch optimization. This scheme
provides identical results as the standard Euclidean version if an embedding of
the given data points is known. In particular, it possesses the same convergence
properties as the standard variants, thereby restricting the computation to known
quantities which do not rely on an explicit embedding in the Euclidean space.

In this contribution, we first introduce batch learning algorithms for standard
clustering and topographic map formation derived from a cost function: k-means,
neural gas, and the self-organizing map for general (e.g. rectangular, hexagonal,
or hyperbolic) grid structures. Then we derive the respective relational dual
resulting in a dual cost function and batch optimization schemes for the case of
a given distance matrix of data or a given Gram matrix, respectively.

2 Topographic Maps

Neural clustering and topographic maps constitute effective methods for data pre-
processing and visualization. Classical variants deal with vectorial data x ∈ R

n
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which are distributed according to an underlying distribution P in the Euclidean
plane. The goal of neural clustering algorithms is to distribute prototypes wi ∈
R

n, i = 1, . . . , k among the data such that they represent the data as accurately as
possible. A new data point x is assigned to the winner wI(x) which is the prototype
with smallest distance ‖wI(x)−x‖2. This clusters the data space into the receptive
fields of the prototypes.

Different popular variants of neural clustering have been proposed to learn
prototype locations from given training data [16]. The well known k-means con-
stitutes one of the most popular clustering algorithms for vectorial data and can
be used as a preprocessing step for data mining and data visualization. How-
ever, it is quite sensitive to initialization. Unlike k-means, neural gas (NG) [20]
incorporates the neighborhood of a neuron for adaptation. Assume the number
of prototypes is fixed to k. The cost function is given by

ENG(w) =
1

2C(λ)

k∑

i=1

∫

hλ(ki(x)) · ‖x−wi‖2 P (dx)

where
ki(x) = |{wj | ‖x−wj‖2 < ‖x−wi‖2}|

is the rank of the prototypes sorted according to the distances, hλ(t)=exp(−t/λ)
scales the neighborhood cooperation with neighborhood range λ > 0, and C(λ)
is the constant

∑k
i=1 hλ(ki(x)). The neighborhood cooperation smoothes the

data adaptation such that, on the one hand, sensitivity to initialization can be
prevented, on the other hand, a data optimum topological ordering of prototypes
is induced by linking the respective two best matching units for a given data point
[21]. Classical NG is optimized in an online mode. For a fixed training set, an
alternative fast batch optimization scheme is offered by the following algorithm,
which in turn computes ranks, which are treated as hidden variables of the cost
function, and optimum prototype locations [2]:

init wi

repeat
compute ranks ki(xj) = |{wk | ‖xj −wk‖2 < ‖xj −wi‖2}|
compute new prototype locations wi =

∑
j hλ(ki(xj)) · xj/

∑
j hλ(ki(xj))

Like k-means, NG can be used as a preprocessing step for data mining and visual-
ization, followed e.g. by subsequent projection methods such as multidimensional
scaling.

The self-organizing map (SOM) as proposed by Kohonen uses a fixed (low-
dimensional and regular) lattice structure which determines the neighborhood
cooperation. This restriction can induce topological mismatches if the data
topology does not match the prior lattice [16]. However, since usually a two-
dimensional regular lattice is chosen, this has the benefit that, apart from clus-
tering, a direct visualization of the data results by a representation of the data
in the regular lattice space. Thus SOM constitutes a direct data inspection and
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visualization method. SOM itself does not possess a cost function, but a slight
variation thereof does, as proposed by Heskes [14]. The cost function is

ESOM(w) =
1
2

k∑

i=1

∫

δi,I∗(x) ·
∑

k

hλ(n(i, k))‖x−wk‖2 P (dx)

where n(i, j) denotes the neighborhood structure induced by the lattice and
hλ(t) = exp(−t/λ) scales the neighborhood degree by a Gaussian function.
Thereby, the index I∗(x) refers to a slightly altered winner notation: the neuron
I∗(x) becomes winner for x for which the average distance

∑

k

hλ(n(I∗(x), k))‖x−wk‖2

is minimum. Often, neurons are arranged in a graph structure which defines the
topology, e.g. a rectangular or hexagonal tesselation of the Euclidean plane resp.
a hyperbolic grid on the two-dimensional hyperbolic plane, the latter allowing
a very dense connection of prototypes with exponentially increasing number of
neighbors. In these cases, the function n(i, j) often denotes the length of a path
connecting the prototypes number i and j in the lattice structure. Original SOM
is optimized in an online fashion. As beforehand, for fixed training data, batch
optimization is possible by subsequently optimizing assignments and prototype
locations.

It has been shown in e.g. [2] that batch optimization schemes of these cluster-
ing algorithms converge in a finite number of steps towards a (local) optimum of
the cost function, provided the data points are not located at borders of receptive
fields of the final prototype locations. In the latter case, convergence can still be
guaranteed but the final solution can lie at the border of basins of attraction.

3 Relational Data

3.1 Median Clustering

Relational data xi are not embedded in a Euclidean vector space, rather, pairwise
similarities or dissimilarities are available. Batch optimization can be transferred
to such situations using the so-called generalized median [2,17]. Assume, distance
information d(xi, xj) is available for every pair of data points x1, . . . , xm. Me-
dian clustering reduces prototype locations to data locations, i.e. adaptation
of prototypes is not continuous but takes place within the space {x1, . . . , xm}
given by the data. We write wi to indicate that the prototypes need no longer
be vectorial. For this restriction, the same cost functions as beforehand can be
defined whereby the Euclidean distance ‖xj−wi‖2 is substituted by d(xj , wi) =
d(xj , xli) whereby wi = xli . Median clustering substitutes the assignment of
wi as (weighted) center of gravity of data points by an extensive search, set-
ting wi to the data points which optimize the respective cost function for fixed
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assignments. This procedure has been tested e.g. in [2,5]. It has the drawback
that prototypes have only few degrees of freedom if the training set is small.
Thus, median clustering usually gives inferior results compared to the classical
Euclidean versions when applied in a Euclidean setting.

3.2 Training Algorithm

Here we introduce relational clustering for data characterized by pairwise simi-
larities or dissimilarities, whereby this setting constitutes a direct transfer of the
standard Euclidean training algorithm to more general settings allowing smooth
updates of the solutions. The essential observation consists in a transformation
of the cost functions as defined above to their so-called relational dual.

Assume training data x1, . . . , xm are given in terms of pairwise distances dij =
d(xi, xj)2. We assume that it originates from a Euclidean distance measure in a
possibly high dimensional embedding, that means, we are able to find (possibly
high dimensional) Euclidean points xi such that dij = ‖xi − xj‖2. Note that
this notation includes a possibly nonlinear mapping (feature map) xi �→ xi

corresponding to the embedding in a Euclidean space, which is not known, such
that we cannot directly optimize the above cost functions. The key observation
is based on the fact that optimum prototype locations wj for k-means and
batch NG can be expressed as linear combination of data points. Therefore, the
unknown distances ‖xj − wi‖2 can be expressed in terms of known values dij .

More precisely, assume there exist points xj such that dij = ‖xi − xj‖2.
Assume the prototypes can be expressed in terms of data points wi =

∑
j αijx

j

where
∑

j αij = 1 (as is the case for NG, SOM, and k-means). Then

‖xj −wi‖2 = (D · αi)j − 1/2 · αt
i ·D · αi (∗)

where D = (dij)ij constitutes the distance matrix and αi = (αij)j the coeffi-
cients. This fact can be shown as follows: assume wi =

∑
j αijx

j , then

‖xj −wi‖2 = ‖xj‖2 − 2
∑

l

αil(xj)txl +
∑

l,l′

αilαil′ (xl)txl′ .

On the other hand,

(D · αi)j − 1/2 · αt
i ·D · αi

=
∑

l ‖xj − xl‖2 · αil − 1/2 ·
∑

ll′ αil‖xl − xl′‖2αil′

=
∑

l ‖xj‖2αil − 2 ·
∑

l αil(xj)txl +
∑

l αil‖xl‖2 −
∑

ll′ αil′αil′‖xl‖2

+
∑

ll′ αilαil′ (xl)txl′

= ‖xj‖2 − 2
∑

l αil(xj)txl +
∑

l,l′ αilαil′(xl)txl′

because of
∑

j αij = 1.
Because of this fact, we can substitute all terms ‖xj −wi‖2 using the equa-

tion (∗) in batch optimization schemes provided optimum prototypes can be
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expressed in terms of data points as specified above. For optimum solutions of
NG, k-means, and SOM, it holds wi =

∑
j αijx

j whereby

1. αij = δi,I(xj)/
∑

j δi,I(xj) for k-means,
2. αij = hλ(ki(xj))/

∑
j hλ(ki(xj)) for NG, and

3. αij = hλ(n(I∗(xj), i))/
∑

j hλ(n(I∗(xj), i) for SOM.

This allows to reformulate the batch optimization in terms of relational data
using (∗). We obtain the algorithm

init αij with
∑

j αij = 1
repeat

compute the distance ‖xj −wi‖2 = (D · αi)j − 1/2 · αt
i ·D · αi

compute optimum assignments based on this distance matrix
α̃ij = δi,I(xj) (for k-means)
α̃ij = hλ(ki(xj)) (for NG)
α̃ij = hλ(n(I∗(xj), i)) (for SOM)

compute αij = α̃ij/
∑

j α̃ij .

Hence, prototype locations are computed only indirectly by means of the coef-
ficients αij . Every prototype is represented by a vector which dimensionality is
given by the number of data points. The entry at position l of this vector can be
interpreted as the contribution of the data point l to this prototype. Thus, this
scheme can be seen as an extension of median clustering towards solutions, where
the prototypes are determined by a (virtual) mixture of data points instead of
just one point.

3.3 Mapping, Quantization Error, Convergence

For clustering, it is also necessary to assign a new data point x (e.g. a data point
from the test set) to classes given pairwise distances of the point to the training
data dj = d(x, xj)2 corresponding to the distance of x from xj . As before, we
assume that this stems from a euclidean metric, i.e. we can isometrically embed
x in Euclidean space as x with d(x, xj)2 = ‖x− xj‖2. Then the winner can be
determined by using the equality

‖x−wi‖2 = (D(x)t · αi)− 1/2 · αt
i ·D · αi

where D(x) denotes the vector of distances D(x) = (dj)j = (d(x, xj)2)j . This
holds because of

‖x−wi‖2 = ‖x‖2 − 2
∑

l

αilx
txj +

∑

ll′

αilαil′(xl)txl′

and
(D(x)t · αi)− 1/2 · αt

i ·D · αi

=
∑

l αil‖x− xl‖2 − 1/2
∑

ll′ αilαil′‖xl − xl′‖2

= (D(x)t · αi)− 1/2 · αt
i ·D · αi,

because of
∑

l αil = 1.
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Note that also the quantization error can be expressed in terms of the given
values dij by substituting ‖xj−wi‖2 by (D ·αi)j−1/2·αt

i ·D ·αi. Thus, relational
clustering can be evaluated by the quantization error as usual.

Relational learning gives exactly the same results as standard batch optimiza-
tion provided the given relations stem from a euclidean metric. Hence, conver-
gence is guaranteed in this case since it holds for the standard batch versions. If
the given distance matrix does not stem from a euclidean metric, this equality
does no longer hold and the terms (D · αi)j − 1/2 · αt

i ·D · αi can become nega-
tive. In this case, one can correct the distance matrix by the γ-spread transform
Dγ = D + γ(1− I) for sufficiently large γ where 1 equals 1 for each entry and I
is the identity.

3.4 Kernels

This derivation allows to use standard clustering agorithms for euclidean dis-
similarity data even if the embedding is not known. A dual situation is present
if data are characterized by similarities rather than similarities, i.e. the Gram
matrix of a kernel or dot product. Since every positive definite kernel induces a
euclidean metric, this setting is included in the one described above (the converse
is not valid, compare e.g. [27]). A simpler derivation (with the same results) can
be obtained substituting distances

‖xj−wi‖2 = ‖xj−
∑

l

αilx
l‖2 = (xj)txj−2

∑

l

αil(xj)txl +
∑

l,l′

αilαil′(xl)txl′ .

This directly leads to a kernelized version of batch clustering, see e.g. [11].

3.5 Complexity

Unlike standard Euclidean clustering, relational clustering has time complexity
O(k · m2) for one epoch and space complexity O(k · m) where k is the num-
ber of prototypes and m the number of data points. Hence, as for the discrete
median versions, the complexity becomes quadratic with respect to the training
data instead of a linear complexity for the Euclidean case. For small data sets
(where ‘virtual’ interpolation of training data is necessary to obtain good proto-
type locations), this is obviously not critical. For large data sets, approximation
schemes should be considered such as a restriction of the non-zero positions of
the vectors αi to the most prominent data points. We are currently investigating
this possibility.

4 Experiments

4.1 Artificial Euclidean Benchmark

As stated before, the relational methods yield the same results as standard batch
optimization provided the given relations originate from a Euclidean metric.
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Fig. 1. Quantization errors on the Euclidean Synthetic 2D dataset for different variants
of NG. The discussed effects on the performance of the different variants can clearly be
observed. Standard Batch (36.42) and the Relational variant (36.27) are virtually on
the same level, but the Median version (38.26) is slightly behind due to limited number
of locations in discrete data space.

We demonstrate this fact for neural gas on a synthetic dataset taken from [25]
consisting of 250 data points. Six neurons were trained for 150 epochs.

The results are depicted in Fig. 1 and 2. It can be clearly observed that the
neurons for standard neural gas and relational neural gas are located nearly on
the same spots, whereas the median neurons are slightly off due to the limited
number of potential locations in the discrete data space. The quantization error
is also virtually on the same minimum level for the Euclidean and relational
variant, however, the median version is slightly behind again.

4.2 Classification of Protein Families

K-means, neural gas, and SOM, as well as their relational variants presented
in this article, perform unsupervised clustering. However, in practice they are
often applied to classification tasks. Certainly, the performance of unsupervised
prototype-based methods for that kind of task is strongly dependent on the
class structures of the data space. Nevertheless, it seems that many real-world
datasets are good natured in this respect.

Here, we present results for a classification task in bioinformatics. The data
is given by the evolutionary distance of 226 globin proteins which is determined
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Fig. 2. Prototype locations on the Euclidean Synthetic 2D dataset for different variants
of NG. The discussed effects on the location of the prototypes can clearly be observed.
Standard Batch and the Relational variant are nearly on the same spots, but the
Median version is slightly off due to limited number of locations in discrete data space.

by alignment as described in [22]. These samples originate from different protein
families: hemoglobin-α, hemoglobin-β, myoglobin, etc. Here, we distinguish five
classes as proposed in [10]: HA, HB, MY, GG/GP, and others. For training we
use 45 neurons and 150 epochs per run. The results reported in Table 1 are gained
from repeated 10-fold stratified cross-validation averaged over 100 repetitions.
For comparison, a (supervised) 1-nearest neighbor classifier yields an accuracy
91.6 for our setting (k-nearest neighbor for larger k is worse; [10]).

The advantage of the relational variants with continuous prototype updates
for (dis-)similarity data can be observed immediately in terms of better accuracy.

4.3 Topographic Mapping of Protein Families

The Protein dataset as described above is mapped by a Relational SOM with 29
neurons and a hyperbolic grid structure. Figure 3 shows the grid projection to
the Euclidean plane, the neurons are labeled with class information determined
by a majority vote on their receptive fields.

Note that the different clusters can easily be identified. The Relational SOM
provides an improved technique to explore dissimilarity data, revealing the struc-
tures of interest.
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Table 1. Classification accuracy on the Protein Data Set and the Copenhagen Chro-
mosomes dataset, respectively, for posterior labeling

Median Median Relational Relational
k-Means Batch k-Means Batch

NG NG

Accuracy (Proteins)

Mean 76.1 76.3 88.0 89.9
StdDev 1.3 1.8 1.8 1.3

Accuracy (Chromosomes)

Mean 82.3 82.8 90.6 91.3
StdDev 2.2 1.7 0.6 0.2

Fig. 3. Mapping of the non-Euclidean Protein dataset by a Relational SOM with hy-
perbolic grid structure
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4.4 Chromosome Images

The Copenhagen chromosomes database is a benchmark from cytogenetics [19]. A
set of 4200 human nuclear chromosomes from 22 classes (the X resp. Y sex chro-
mosome is not considered) are represented by the grey levels of their images and
transferred to strings representing the profile of the chromosome by the thickness
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of their silhouettes. Thus, this data set consists of strings of different length. The
edit distance is a typical distance measure for two strings of different length, as
described in [15,23]. In our application, distances of two strings are computed us-
ing the standard edit distance whereby substitution costs are given by the signed
difference of the entries and insertion/deletion cost are given by 4.5 [23].

The algorithms were tested in a repeated 2-fold cross-validation using 100
neurons and 100 epochs per run. The results presented are the mean accuracy
over 10 repeats of the cross-validation. Results are reported in Tab. 1. As can
be seen, relational clustering achieves an accuracy of more than 90% which is an
improvement by more 8% compared to median variants. This is comparable to
the classification accuracy of hidden Markov models as reported in [15].

5 Discussion

We have introduced relational neural clustering which extends the classical Eu-
clidean versions to settings where pairwise Euclidean distances (or similarities) of
the data are given but no explicit embedding into a Euclidean space is known. By
means of the relationaldual,batch optimization canbe formulated in terms of these
quantities only. This extends previous median clustering variants to a continuous
prototype update which is particularly useful for only sparsely sampled data.

The general framework as introduced in this article opens the way towards the
transfer of further principles of SOM and NG to the setting of relational data: as
an example, the magnification factor of topographic map formation for relational
data transfers from the Euclidean space, and possibilities to control this factor
as demonstrated for batch clustering e.g. in the approach [8] can readily be used.

Since these relational variants rely on the same cost function as the standard
Euclidean batch optimization schemes, extensions to additional label information
as proposed for the standard variants [5,6] become available.

One very important subject of future work concerns the complexity of compu-
tation and sparseness of prototype representation. For the approach as introduced
above, the complexity scales quadratic with the number of training examples. For
SOM, it would be worthwhile to investigate whether efficient alternative compu-
tation schemes such as proposed in the approach [1] can be derived. Furthermore,
the representation contains a large number of very small coefficients, which corre-
spond to data points for which the distance from the prototype is large. Therefore
it can be expected that a restriction of the representation to the close neighbor-
hood is sufficient for accurate results.
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Abstract. Classification is a quite relevant task within data mining
area. This task is not trivial and some difficulties can arise depending
on the nature of the problem. Multiple classifier systems have been used
to construct ensembles of base classifiers in order to solve or alleviate
some of those problems. One of the most current problems that is being
studied in recent years is how to learn when the datasets are too large or
when new information can arrive at any time. In that case, incremental
learning is an approach that can be used. Some works have used multiple
classifier system to learn in an incremental way and the results are very
promising. The aim of this paper is to propose a method for improving
the classification (or prediction) accuracy reached by multiple classifier
systems in this context.

1 Introduction

Classification and prediction tasks are two of the most popular activities in data
mining and there are many approaches that try to extract knowledge from data.
These approaches are very diverse, but one of the most active research area is
focused on multiple classifier systems what have been benefited from the idea of
using a committee or ensemble of models to do that tasks. In the literature we
can find many approaches to define a multiple classifier system, but two of the
most representative methods are bagging [1] and boosting [2].

Machine learning systems are currently required to deal with large datasets.
But, trying to extract knowledge from such numbers of examples can become
an inaccessible problem for traditional algorithms (simple or multiple classifier
systems). Moreover, data streams have recently become a new challenge for data
mining because of certain features [3] of which infinite data flow is the most
notable. Incremental learning methods (including online or sequential methods)
have some features that make them very suitable to deal with huge amounts of
data and to prevent excessively high memory requirements.
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In recent years some researches have tackled the incremental learning meth-
ods using multiple classifier systems. They have been made using different base
classifiers: decision trees [4,5], neural networks and Näıve Bayes [6], etc. Those
approaches are susceptible of being improved independently of the base classifier:
they can be trained with rough set based reducts [7,8], they can use weighted ma-
jority voting procedures [9], they can specifically deal with concept drift [3,5,10],
etc.

In this paper we propose a method to improve the classification (or prediction)
accuracy reached by multiple classifier systems. It is also independent on the
kind of the ensemble and can be applied to a wide variety of multiple classifier
systems.

The next Section describes a basic method for developing incremental learning
methods using multiple classifier systems. In that same Section (Subsection 2.2)
one new method to improve the accuracy of the model is exposed. It uses what
we have called “correction filters for classification”. The experimental evaluation
is presented in Section 3. Finally, in Section 4, we summarise our conclusions
and suggest future lines of research.

2 Incremental Learning with Multiple Classifier Systems

The advantages of using multiple classifier systems have been shown in many
different works [1,2]. Recently, some research efforts are being directed to use
those advantages in the incremental learning area [4,5,6]. Nowadays, this is very
necessary because the size of the datasets are increasingly growing. Even more,
the data streams are becoming a fact and incremental learning has been revealed
as an effective approach to deal with this emergent problem.

In the next Subsection we will present one of the most common approaches for
using multiple classifier systems in an incremental way. Then, in Subsection 2.2,
we will describe how almost every approach based in multiple classifier systems
can be improved using correction filters for classification, the contribution that
we propose.

2.1 Basic Method

In general, as proposed Fern and Givan [10], the methods for using multiple
classifier systems for incremental learning can be divided in two main groups.
We can distinguish between sequential or parallel generation. The generation is
sequential when the classifiers that constitute the ensemble are induced one at
a time, ceasing to update each member once the next one is started. On the
other hand, the approach is called parallel when every classifier in the ensemble
is updated every time that a new example is used. In this Subsection we will
present the sequential approach because the first works were based on it [4,11];
anyway, this selection does not condition following sections.

In Figure 1 we represent a simple diagram where the induction of a multiple
classifier system for incremental learning is shown. The process used for that
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Fig. 1. Simple diagrams describing the induction of a multiple classifier system for
incremental learning (left) and its application to the prediction process (right)

induction can be very useful when we have to work with very large datasets
(or data streams) because small blocks of examples are taken to induce the base
classifiers. By selecting small blocks, different classifier algorithms can be used to
induce such base classifiers and we solve the problem of managing large amounts
of data. In addition, the blocks are used to update the quality measures of the
other base classifiers that constitute the multiple classifier systems. In the same
Figure 1 (on the right side) we have shown how the multiple classifier systems
are normally used to predict (this procedure is also used by non incremental
multiple classifier systems).

The pseudocode of a basic approach for incremental learning with multiple
classifier systems is shown in Figure 2. It follows the schema presented in Figure 1
and it is based on the algorithm SEA, proposed by Street and Kim [5]. As can
be seen, the dataset (large database or data stream) is used as the source of
examples, and they are extracted from it using blocks of equal size. Once a block
is composed, it is used to induce a new base classifier that will be added to
the ensemble. The quality of every classifier in the ensemble is updated (the
models keep equal) and someone with worse quality than the new induced one
is removed from it (if a maximum number of base classifiers is exceeded).

We must note that, although the algorithm stops when there are no more
examples in the dataset, the model (multiple classifier system) that is being
induced can be used at any instant to classify an example or predict the class
of one observation. This method produces one kind of learning that can be
designated as “any-time” learning [12] because, at every moment, there is a
multiple classifier system ready to be used (to classify or predict).

We have developed a multiple classifier system for incremental learning based
on the pseudocode presented in Figure 2. It is called MultiCIDIM-DS and its
name comes from the base algorithm used: CIDIM [13]. This algorithm, CIDIM,
has also been used in other multiple classifier systems (like FE-CIDIM [14])
obtaining good results. The main advantage of using CIDIM as base algorithm
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Input: dataset, base algorithm, block size, max number of classifiers

1. Ensemble = ∅

2. while dataset �= ∅ do:
2.1 Training Examples ← Extract first block size examples from dataset

(they are removed from dataset)
2.2. Classifieri ← Induce new classifier with base algorithm

using Training Examples
2.3. Update Quality(Classifieri−1) using Training Examples
2.4. Update Quality(x) ∀x ∈ Ensemble using Training Examples
2.5. if |Ensemble| < max number of classifiers then:
2.5.1. Insert Classifieri−1 in Ensemble
2.6. else:
2.6.1. if ∃x ∈ Ensemble | Quality(x) < Quality(Classifieri−1) then:
2.6.1.1. Replace x with Classifieri−1 in Ensemble

Output: Ensemble

Fig. 2. Pseudocode for incremental learning with multiple classifier systems

is that it induces accurate (and small) decision trees. Besides the different base
algorithms used by SEA (C4.5 [15]) and MultiCIDIM-DS (CIDIM), there are two
main differences between them: the quality measure used by MultiCIDIM-DS is
simpler, because it only uses the success rate; and the base classifier selected to
be removed, when the size of the ensemble is exceeded, is the worst one (instead
of any worse than the new induced one).

2.2 Correction Filters for Classification

Different improvements have been incorporated to multiple classifier systems:
using weighted majority voting procedure [9], training with rough set based
reducts [7,8], etc. Our objective in this paper is to present a new improvement
that can be used in combination with any kind of multiple classifier system for
incremental learning. The purpose of the method is to learn which subspaces of
the global space are correctly learnt by each base classifier, as Ortega did with
non-incremental multiple classifier systems [16]. Considering this knowledge a
new more informed voting method can be designed. A “gated” voting procedure
had been experimented by Street and Kim [5] but they got no consistent im-
provement over simple voting. The procedure proposed by them consisted in
training a separate classifier in conjunction with the base classifier. The new
classifier would be trained to learn if the base classifier would correctly classify
a concrete example (no more details are given because they got no consistent
improvement). In fact, the idea is similar to the one that we present in this pa-
per, except that we are considering incremental algorithms and we are achieving
some improvements.
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Fig. 3. Simple diagrams describing the induction of a multiple classifier system for
incremental learning with correction filters for classification or CFC (top) and its ap-
plication to the prediction process (bottom)

As we have mentioned, the method that we are proposing includes some clas-
sifiers that try to learn which kind of examples are correctly classified by the cor-
responding base classifiers. In Figure 3 is shown a schematic description. These
new classifiers (called correction filters) are induced by any kind of incremental
algorithm [17,18]. Thus, the ensemble will be constituted by a maximum num-
ber of base classifiers and the same number of correction filters for classification
(CFC). We have called the new classifiers as correction filters because they will
be used to filter the output of the base classifiers when the ensemble is used to
predict. We must note that the base classifiers remain unalterable, what change
are their quality measures and their correction filters.

The examples passed to the algorithm that induces the correction filters are
the same that the examples used to induce new base classifiers (or to update
the quality measure of existing base classifiers) but with one difference: the
class attribute. The original class attribute is replaced by a binary attribute
that represents the success or failure of the corresponding base classifier when
it is used to classify the original example. Thus, the correction filter will learn
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Input: dataset, base algorithm, block size, max number of classifiers
incremental algorithm

1. Ensemble = ∅

2. while dataset �= ∅ do:
2.1 Training Examples ← Extract first block size examples from dataset

(they are removed from dataset)
2.2. Classifieri ← Induce new classifier with base algorithm

using Training Examples
2.3. Ensemble = Ensemble ∪ {Classifieri−1}
2.4. for every classifier x ∈ Ensemble do:
2.4.1 Update Quality(x) using Training Examples
2.4.2 Training CFC ← Modify examples in Training Examples

including the classification made by x
2.4.3 if CFCx exists then:
2.4.3.1 CFCx ← Update CFCx with incremental algorithm

using Training CFC
2.4.4 else:
2.4.4.1 CFCx ← Induce new correction filter with incremental algorithm

using Training CFC
2.5. if |Ensemble| > max number of classifiers then:
2.5.1. Worst classifier = {x ∈ Ensemble | Quality(x) < Quality(y)

∀y ∈ Ensemble ∧ x �= y}
2.5.2. Ensemble = Ensemble − {Worst classifier}

Output: Ensemble

Fig. 4. Pseudocode for incremental learning with multiple classifier systems using cor-
rection filters for classification (CFC)

which examples are correctly classified by its corresponding base classifier and
which are misclassified. In the upper side of Figure 3 we present schematically
how are induced the CFC and, in Figure 4, we give a detailed description of
such process. We have said that the correction filters can be induced by any
incremental algorithm. Actually, they can be induced by any kind of classifier
algorithm, but using incremental algorithms has some advantages. Some base
classifiers can stay in the ensemble for a long time (may be from the beginning).
In fact, if their quality is very high (they are quite accurate, simple, etc.) they
may be in the ensemble forever. Taking this into account, it would be very
desirable to have as exact information as possible about the subspaces that are
correctly learnt by every base classifier. The best way of achieving this aim is
considering every example with an incremental approach.

This new method preserves the any-time property of the basic method. The
ensemble can be used at any time to classify (or predict) any example. The
prediction procedure using the new approach is very simple and it is presented
in the lower side of Figure 3. Every base classifier gives its own prediction, but the
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Input: Ensemble (Multiple Classifier System with CFC),
o (observation = unlabelled example)

1. N ← number of base classifiers in Ensemble
2. ci ← prediction vector for o using the i-th base classifier in Ensemble
3. fi ← probability of correct classification of o using the i-th base classifier

in Ensemble (it is calculated using the i-th CFC)
4. Prob Best Prediction = max{fi | 1 ≥ i ≥ N}
5. Min V alue For Combination = max(0.5, (Prob Best Prediction−

(Prob Best Prediction ∗ 0.1)))
6. Predict V ector = (0, 0, . . . , 0)
7. if Prob Best Prediction ≥ 0.5 then:
7.1. from i = 1 to N do:
7.1.1. if fi ≥ Min V alue For Combination then:
7.1.1.1. Predict V ector = Predict V ector + ci ∗ fi

8. else:
8.1. from i = 1 to N do:
8.1.1. Predict V ector = Predict V ector + ci ∗ (1 − fi)
8.2. from j = 1 to |V ector Pred| do:
8.2.1. Predict V ectorj = 1 / Predict V ectorj

9. Predict V ector = normalize(Predict V ector)

Output: Predict V ector (prediction vector)

Fig. 5. Pseudocode of prediction process using multiple classifier systems with correc-
tion filters for classification (CFC)

ensemble only considers the relevant information. It is at this moment when filters
are used to correct the classification proposed by the base classifiers. The example
without the class label is given to the correction filters, and they give the proba-
bilities of success of the corresponding base classifiers.A more detailed description
is shown in Figure 5. The predictions given by the base classifiers whose proba-
bility of success is near to the best one (fi ≥ Min V alue For Combination) are
considered to calculate the final prediction vector. If none filter gives a probability
of correct classification greater than 0.5 (Prob Best Prediction < 0.5), it means
that every base classifier misclassifies the example. In that case, we look for the
minority class.

Using sequential or parallel generation does not condition the use of the
method that we are presenting, because the correction filters can be always
updated independently of the kind of generation. When new examples are used,
they are classified by the current base classifiers, and successes or failures are
learnt by the incremental algorithm.

Finally, another interesting point that will be briefly discussed in this paper
is the possibility of using this method to improve the performance of a multiple
classifier system in presence of concept drift. When sequential generation is used
and a concept drift happens, the ensemble will probably need to replace most
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of the base classifiers. But this will require as many iterations as base classifiers
need to be replaced. On the other hand, if the correction filters are induced using
an incremental algorithm that can detect concept drift, every base classifier that
will be replaced in subsequent steps can be deleted from the ensemble in the first
iteration. In this way, classifiers that are incorrect because of the concept drift
are promptly removed.

We have used the correction filters for classification to develop a concrete
algorithm that we have called MultiCIDIM-DS-CFC. It is based on MultiCIDIM-
DS but the difference is the incorporation of CFC. The base algorithm given
in the input is CIDIM and the incremental algorith that induces the CFC is
IADEM-2 [19].

3 Experiments and Results

In this Section we show the results of different experiments that have been made
to test the improvements of using correction filters for classification. The exper-
iments have been done using three synthetic datasets randomly generated using
decision trees and two real datasets: the LED dataset from UCI Machine Learn-
ing Repository [20] and the Electricity dataset from http://www.liacc.up.pt/~
jgama/ales/elec.tar. Every dataset built using randomly generated decision
trees has one million examples and they are defined by 20 nominal attributes.
They have been called Syn 1 (0% noise and balanced), Syn 2 (0% noise and
imbalanced) and Syn 3 (15% noise). The dataset created using the LED gener-
ator also has one million examples and it is noisy (10% noise). The Electricity
dataset has 27549 examples after removing examples with unknown values.

We have conducted 10-fold cross validations for every experiment. For study-
ing the performance we have selected two criteria: the classification accuracy and
the size of the trees. The results shown are the average value and the standard
deviation. We are mainly interested in evaluating the improvement of using CFC,
so we will set the algorithm MultiCIDIM-DS-CFC as our reference algorithm.
We will compare different algorithms with it and we would like to know when
there exist statistical differences between the algorithm that uses CFC and other
algorithms (⊕ if the algorithm is significantly better than MultiCIDIM-DS-CFC
and � if it is worse). In order to show such differences we have conducted a
Wilcoxon signed rank test. The reasons for selecting this non-parametric test
are well exposed in the work of Demšar [21], but we must remark that it is safer
than parametric tests and stronger than some other tests. The confidence level
to conduct the rank test has been set to 0.95.

Both versions of MultiCIDIM-DS (with CFC or without CFC) have been
compared with other algorithms. As two traditional ensemble algorithms we
have chosen bagging [1] and boosting [2]. Their base classifier is C4.5 [15]. We
have used the implementation of bagging, boosting and C4.5 given in Weka [22]
(C4.5 is called J48). Bagging-J48 and Boosting-J48 do not use an incremental
approach and they use the entire dataset to induce the model, what may affect
on a higher accuracy. As an incremental algorithm we have selected VFDT [17].

http://www.liacc.up.pt/~jgama/ales/elec.tar
http://www.liacc.up.pt/~jgama/ales/elec.tar
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Fig. 6. Accuracy and ratio of accuracy improvement depending on the block size
(block size)

We have selected these algorithms because they are well-documented algorithms,
they induce decision trees, and their implementations can be found available in
the Internet. We must note that all algorithms have been executed using their
default configuration.

The only new parameter in MultiCIDIM-DS that is not present in CIDIM, or
FE-CIDIM or IADEM-2 is block size, and following we will see its importance.
In Figure 6 it can be seen how different values of block size (from 1K to 50K)
affects to the accuracy. The default value has been fixed in 10K when there is
no noise and 50K when there is noise (one exception has been made with the
Electricity dataset because its size is not so large and we have used 5K in that
case). Another interesting point that can be observed is how using correction
filters improves the accuracy (in presence of noise or not). The improvement is
greater when the maximum level of accuracy has not been reached yet. Anyway,
the improvement is usually significant even when maximum accuracy is reached
(as can be seen in Table 1). We have included the ratio of accuracy improvement
in Figure 6 because it can not be clearly observed in absolute accuracy chart. As
can be seen, although the improvement seems to be small in the Syn 1 dataset,
it is always over 50%, even when accuracy is near to the maximum.

As it can be seen in Table 1, both MultiCIDIM-DS and MultiCIDIM-DS-CFC
seems to have a good performance. We must note that, although the results are
usually the best ones using Bagging-J48 and Boosting-J48 in experiments with-
out noise (Syn 1 and Syn 2 ), MultiCIDIM-DS-CFC gets very similar results,
overcoming them only in the number of leaves when testing Syn 1 dataset. On
the other hand, we can see how traditional algorithm are not good for dealing
with large datasets and the using of an incremental learning approach is revealed
as fundamental. Bagging-J48 and Boosting-J48 needed much more memory in
order to induce models when the datasets are large and there is noise in them
(Syn-3 and LED). Algorithms marked with asterisks (‘**’) needed 2GB of mem-
ory while normal configuration used only a maximum of 512MB. We can see
another interesting point when we try to extract knowledge from noisy datasets:
the accuracy achieved by Bagging-J48 and Boosting-J48 is usually higher, but
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Table 1. Results for the synthetic and real datasets. Algorithms marked with ‘**’
needed 2GB of memory to conclude the induction of the model. We use ⊕ when the
result of an algorithm is significantly better than the model induced by MultiCIDIM-
DS-CFC and 
 when it is worse.

Dataset Algorithm Accuracy Leaves

Syn-1
0% noise VFDT 99.55 ± 0.03 
 449.00 ± 0.00 


Bagging-J48 100.00 ± 0.00 ⊕ 398.00 ± 0.00 

Boosting-J48 100.00 ± 0.00 ⊕ 398.00 ± 0.00 


MultiCIDIM-DS 99.86 ± 0.06 
 345.05 ± 7.38

MultiCIDIM-DS-CFC 99.947 ± 0.02 345.05 ± 7.38

Syn-2
0% noise VFDT 92.68 ± 6.01 
 193.40 ± 35.95

Bagging-J48 100.00 ± 0.00 ⊕ 109.45 ± 6.86 ⊕
Boosting-J48 100.00 ± 0.00 ⊕ 104.50 ± 14.23 ⊕

MultiCIDIM-DS 99.78 ± 0.36 
 187.49 ± 91.37

MultiCIDIM-DS-CFC 99.92 ± 0.12 187.49 ± 91.37

Syn-3
15% noise VFDT 73.23 ± 5.99 
 1357.20 ± 356.10

Bagging-J48** 84.14 ± 0.12 ⊕ 67626.04 ± 214.63 

Boosting-J48** 83.16 ± 0.13 ⊕ 134866.69 ± 218.84 


MultiCIDIM-DS 80.89 ± 0.99 1354.19 ± 39.25

MultiCIDIM-DS-CFC 80.96 ± 1.07 1354.19 ± 39.25

LED
10% noise VFDT 73.85 ± 0.05 
 75.30 ± 0.95 ⊕

Bagging-J48** 73.94 ± 0.13 36150.17 ± 197.38 

Boosting-J48** Out of memory

MultiCIDIM-DS 73.96 ± 0.22 118.35 ± 5.27

MultiCIDIM-DS-CFC 73.98 ± 0.14 118.35 ± 5.27

Electricity
VFDT 65.08 ± 2.89 29.40 ± 5.97 ⊕

Bagging-J48 67.27 ± 0.03 ⊕ 2689.25 ± 232.16 

Boosting-J48 67.90 ± 0.03 ⊕ 2347.53 ± 113.99 


MultiCIDIM-DS 64.28 ± 3.55 
 320.92 ± 35.73

MultiCIDIM-DS-CFC 65.57 ± 2.78 320.92 ± 35.73

the average size of the decision trees that constitute the multiple classifier sys-
tems is much more higher. Here we can see one advantage of using CIDIM as
base classifier: the induction of simpler models.

If we compare MultiCIDIM-DS ensembles (with or without CFC) and VFDT,
the differences are obvious. Considering the number of leaves or the accuracy,
we can see that the results achieved by MultiCIDIM-DS are usually significantly
better than those achieved by VFDT. Even more if we consider MultiCIDIM-
DS-CFC for the accuracy aspect.
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Comparing MultiCIDIM-DS with MultiCIDIM-DS-CFC reveals that the ac-
curacy is always better when using the correction filter for classification (CFC).
In addition, the differences are usually significant. With these experiments we
can see how using some kind of filter can improve the accuracy of the induced
model.

4 Conclusion

This paper introduces a method for improving the classification (or prediction)
accuracy reached by multiple classifier systems. It is based on the use of correc-
tion filters for classification (CFC). These filters are classifiers that try to learn
which subspaces have been correctly learnt by the base classifiers in the ensem-
ble. Using that information, the ensemble can improve the prediction of unseen
examples.

Out aim of improving CFC involves some issues. We are working to test
this approach with other kind of ensembles (online bagging and boosting, etc.),
base classifiers (decision trees, SVM, etc.) and generation approaches (parallel
generation). Thus we could study how much improvement can be expected from
the new approach in different conditions. Another important aspect will be the
study of the performance of this method in the presence of concept drift using
different kinds of incremental learning algorithms to induce the CFCs.
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13. Ramos-Jiménez, G., Campo-Ávila, J., Morales-Bueno, R.: Induction of decision
trees using an internal control of induction. In: Cabestany, J., Prieto, A.G., San-
doval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 795–803. Springer, Heidelberg
(2005)
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Abstract. Random forests are one of the best performing methods for
constructing ensembles. They derive their strength from two aspects:
using random subsamples of the training data (as in bagging) and ran-
domizing the algorithm for learning base-level classifiers (decision trees).
The base-level algorithm randomly selects a subset of the features at each
step of tree construction and chooses the best among these. We propose
to use a combination of concepts used in bagging and random subspaces
to achieve a similar effect. The latter randomly select a subset of the
features at the start and use a deterministic version of the base-level al-
gorithm (and is thus somewhat similar to the randomized version of the
algorithm). The results of our experiments show that the proposed ap-
proach has a comparable performance to that of random forests, with the
added advantage of being applicable to any base-level algorithm without
the need to randomize the latter.

1 Introduction

Random forests [1] are one of the best performing methods for constructing
ensembles of classifiers. They their strength from two aspects: using random
subsamples of the training data, on one hand, and randomizing the algorithm for
learning base-level classifiers (decision trees). The base-level algorithm randomly
selects a subset of the features at each step of tree construction and chooses the
best among these.

We propose to use a combination of bagging [2] and random subspaces [3] to
achieve a similar effect. In bagging, we sample the training set and generate ran-
dom independent bootstrap replicates [4] (random subsamples). The replicates
are then used for learning the base-level classifiers of the ensemble. In the random
subspace method [3], base-level classifiers are learned from random subspaces of
the data feature space. It randomly selects a subset of the features at the start
and uses a deterministic version of the base-level algorithm. This procedure is
somewhat similar to the randomized version of decision tree classifier used with
random forests.

The advantage of this approach over random forests is that it is applicable to
any base-level algorithm without the need to randomize the latter. We show that
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in case of decision trees as base-level algorithm our approach archives comparable
results to random forests.

The rest of the paper is organized as follows. Section 2 gives an overview
of randomization methods for constructing ensembles of classifiers. In Section 3
we present our combined ensemble method. Section 4 describes the experimental
setup. Section 5 covers the results and the discussion and in Section 6 we present
the conclusions.

2 Overview of Randomization Methods for Constructing
Ensembles of Classifiers

Let us consider the standard supervised learning problem. A learning algorithm
is given training examples S of the form S = {(X1, Y1) , ..., (Xn, Yn)}, where n is
the number of training samples, for some unknown function Y = f (X). The Xj

values are typically vectors of the form Xj = (xj1, xj2, ..., xjp) (j = 1, 2, ..., n)
where xjk is the value of the k-th feature of example Xj and p is the number of
features.

The Y values are typically drawn from a discrete set of classes {c1, ..., cK} in
the case of classification or from the set of numbers in the case of regression. In
this work we consider only the task of classification.

The output of the learning algorithm is a classifier which is a hypothesis about
the true function f . Given new examples X it predicts the corresponding Y
values. An ensemble of classifiers is a set of classifiers whose individual decisions
are combined by using some voting scheme (typically by weighted or unweighted
voting) to classify new examples. We will denote the ensemble of classifiers by
E = {C1, C2, ..., CB}, where B is the number of classifiers.

Since there is no point in combining classifiers that always make similar de-
cisions, the aim is to be able to find a set of base-level classifiers that will differ
in their decisions so that they can complement each other. There are different
possibilities how this can be achieved.

One possibility is to have different training sets to train the different base-level
classifiers. This can be done randomly by creating random training sets from the
given sample as is the case of bagging [2] or by using a random subset of features
from the feature set as is the case in the random subspace method [3]. The
classifiers can also be trained in series so that instances on which the preceding
base-level classifiers are not accurate are given more emphasis in training the
next base-level classifiers, like in boosting [5].

Another possibility of inducing ensembles of classifiers is to use randomized
versions of the base-level algorithms or to use different algorithms all together
to train the base-level classifiers.

Also, combined approaches exist that introduce variations in the training set
(e.g bagging) and also use randomized versions of base-level learners (e.g decision
trees). This is the case with random forests introduced by Breiman [1].

In this work we focus on combining bagging and the random subspace method
to achieve comparable performance to random forests. In that context, in the
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remaining part of this section we present an overview of bagging, the random
subspace method and random forests.

2.1 Bagging

Bagging is based on the concepts of bootstrapping [4] and aggregating, and was
introduced by Breiman [2]. Bootstrapping is based on random sampling with re-
placement. Therefore, taking a bootstrap replicate Si =

(
X i

1, X
i
2, ..., X

i
n

)
of the

training set S = (X1, X2, ..., Xn), one can sometimes have less misleading train-
ing instances in the bootstrap training set. Consequently, a classifier constructed
on such a training set may have better performance. Aggregating actually means
combining of classifiers.

Often, an ensemble of classifiers gives better results than its individual base
classifiers because it combines the advantages of the base-level classifiers. Bag-
ging gives good results when unstable learning algorithms (e.g. decision trees)
are used as base-level classifiers, where small changes in the training set result
in largely different classifiers. The bagging algorithm is presented in Table 1.

Table 1. Bagging

Input: Training examples S, Bag size B
Output: Ensemble E

E ⇐ 0
for i = 1 to B do

Si ⇐ BootstrapSample(S)
Ci ⇐ ConstructClassifier(Si)
E ⇐ E ∪

{
Ci
}

end for
return E

When bootstrapping the training set S = (X1, X2, ..., Xn), the probability
that the training instance Xj is selected m times in a bootstrap sample Si is
given in Equation 1.

b

(

m|n,
1
n

)

= Cm
n

(
1
n

)m(

1− 1
n

)n−m

, Cm
n =

n!
m!(n−m)!

(1)

For large n, the binomial distribution can be approximated by the Poisson dis-
tribution, so that each instance has a probability of approximately 1

e of being
left out of a bootstrap sample. Therefore, on average, approximately 37% of the
instances are not present in the bootstrap sample. This means that possible out-
liers in the training set sometimes do not show up in the bootstrap sample. By
that, better classifiers (with smaller error) may be obtained from the bootstrap
sample than from the original training set.
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2.2 The Random Subspace Method

The random subspace method (RSM) is an ensemble construction technique
proposed by Ho [3]. In the RSM, the training set is also modified as in bag-
ging. However, this modification is performed in the feature space (rather than
example space).

Let each training example Xj in the training sample set S be a p-dimensional
vector Xj = (xj1, xj2, ..., xjp). In the RSM, we randomly select p∗ features from
the training set S, where p∗ < p. By this, we obtain the p∗ dimensional random
subspace of the original p-dimensional feature space. Therefore, the modified
training set S̃ =

(
X̃1, X̃2, ..., X̃n

)
consists of p∗-dimensional training examples

X̃j = (xj1, xj2, ..., xjp∗) (j = 1, 2, ..., n). Afterwards, base-level classifiers are con-
structed from the random subspaces S̃i (of the same size), i = 1, 2, ..., B, and
they are combined by a voting scheme to obtain a final prediction. The RSM
algorithm is presented in Table 2.

Table 2. Random subspace method

Input: Training examples S, Number of subspaces B, Dimension of subspaces p∗

Output: Ensemble E
E ⇐ 0
for i = 1 to B do

S̃i ⇐ SelectRandomSubspace(S,p∗)
Ci ⇐ ConstructClassifier(S̃i)
E ⇐ E ∪

{
Ci
}

end for
return E

The RSM may benefit from using both random subspaces for constructing the
classifiers and aggregating the classifiers. When the number of training examples
is relatively small as compared with the data dimensionality, by constructing
classifiers in random subspaces one may solve the small sample problem. In this
case the subspace dimensionality is smaller than in the original feature space,
while the number of training objects remains the same. When the dataset has
many redundant features, one may obtain better classifiers in random subspaces
than in the original feature space. The combined decision of such classifiers may
be superior to a single classifier constructed on the original training set in the
complete feature space.

The RSM was originally developed for decision trees, but the methodology can
be used to improve the performance of other unstable classifiers (e.g. rules, neural
networks etc.). The RSM is expected to perform well when there is a certain
redundancy in the data feature space [3]. It is noticed that the performance of
the RSM is affected by problem complexity (feature efficiency, length of class
boundary etc.)[6]. When applied to decision trees, the RSM is superior to a
single classifier and may outperform both bagging and boosting [3].
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2.3 Random Forests

Random forests, introduced by Breiman [1], have been shown to be a powerful
classification and regression technique. In bagging, single models are induced over
bootstrap samples of the training data, and the classification is made by using
some voting scheme. Random forests is a particular implementation of bagging
in which each model is a random tree. A random tree is grown according to the
CART [7] algorithm with one exception: for each split, rather than considering all
possible splits, only a small subset of randomly selected splits is considered (e.g.
a random subset of input features), and the best split is chosen from this subset.
There are two random steps when inducing the trees: the bootstrap sample for
each tree, and random selection of features to split on at every node of the tree.

Let n be the number of training examples, and p the number of variables in the
classifier. Let f be the number of input variables to be used to determine the de-
cision at each node of the tree and f << p (usually f =

√
p or f = �log2(p) + 1�).

The algorithm for constructing random forests is presented in Table 3.

Table 3. Random forest

Input: Training examples S,Bag size B, Proportion of features considered f
Output: EnsembleE

E ⇐ 0
for i = 1 to B do

Si ⇐ BootstrapSample(S)
Ci ⇐ BuildRandomTreeClassifier(Si, f)
E ⇐ E ∪

{
Ci
}

end for
return E

3 Combining Bagging and Random Subspace Method

In this section, we present an ensemble construction scheme in which new learn-
ing sets are generated on the basis of both bagging and random subspaces.

In this combined method, the training set is modified in two ways. First,
the modification is performed in the training set by taking bootstrap replicates
Si =

(
X i

1, X
i
2, ..., X

i
n

)
of the training set S = (X1, X2, ..., Xn). After that, a mod-

ification is performed in the feature space (like in the RSM) on every bootstrap
replicate taken from the training set.

Let each example X i
j (j = 1, 2, ..., n; i = 1, 2, ...B) of a bootstrap replicate Si =

(
X i

1, X
i
2, ..., X

i
n

)
be a p-dimensional vector X i

j =
(
xi

j1, x
i
j2, ..., x

i
jp

)
. We ran-

domly select p∗ < p features from every bootstrap replicate X i. By this, we
obtain the p∗ dimensional random subspace of the original p-dimensional fea-
ture space. Therefore, the modified training set S̃i =

(
X̃ i

1, X̃
i
2, ..., X̃

i
n

)
consists of

p∗-dimensional training examples X̃ i
j =

(
xi

j1, x
i
j2, ..., x

i
jp∗
)
(j = 1, 2, ..., n), where

the p∗ components xi
jk (k = 1, 2, ..., p∗) are randomly selected from p components
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Table 4. SubBag

Input: Training examples S, Bag size B, Dimension of the subspaces p∗

Output: Ensemble E
E ⇐ 0
for i = 1 to B do

Si ⇐ BootstrapSample(S)
S̃i ⇐ SelectRandomSubspace(Si, p∗)
Ci ⇐ ConstructClassifier(S̃i)
E ⇐ E ∪

{
Ci
}

end for
return E

xi
jk (j = 1, 2, ..., p) of the training vector X i

j (the selection is the same for each
training vector). One then constructs base-level classifiers in the random sub-
spaces S̃i (of the same size), i = 1, 2, ..., B, and combines them with a voting
scheme in the final prediction rule. We name this algorithm SubBag and it is
presented in Table 4.

4 Implementation and Experimental Setup

For the experimental evaluation of the proposed method, we used the WEKA
[8] data mining environment. In the original implementation some of the en-
semble methods like bagging and random forests were already implemented. We
implemented the random subspace method and our proposed combined method
labeled as SubBag. The reason why the WEKA environment was chosen is that
it offers a variety of learning algorithms and a well defined framework for devel-
opment of new algorithms. The WEKA Experimenter was used for testing and
comparing the performances of different learning algorithms.

Experiments were performed on 19 datasets taken from the UCI repository
[9]. We selected datasets from the repository that have different number of train-
ing instances, different number of features, and different number of classes. A
summary of the datasets used is presented in Table 5.

In this work, we compared four ensemble learning algorithms: SubBag, the
random subspaces method (RSM), bagging and random forests. Experiments
were conducted using three base-level algorithms: J48 which is WEKA’s imple-
mentation of C4.5 [10] decision tree, JRip which is WEKA’s implementation of
the RIPPER [11] rule learner and the nearest neighbor algorithm IBk [12].

The comparisons of the ensemble algorithms were made with same number of
classifiers (B=50). For the random subspace method and SubBag 75% of the in-
put features were randomly selected for every classifier. With random forests, we
choose �log2(p) + 1� (where p is the number of input variables to the classifier)
variables to be randomly selected for determining the spliting attribute at every
node of the tree. Base-line algorithms were used with parameters as specified here:
J48 algorithm was used to induce unpruned trees, JRip was used to produce un-
pruned rules and IBk algorithm was used with 1 nearest neighbour and the search
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Table 5. Datasets used in the experiments

Dataset Training set Number of Number of
size features classes

arrhythmia 452 279 16
audiology 226 69 24
autos 205 25 7
cylinder-bands 540 39 2
dermatology 336 34 6
hepatitis 155 19 2
hypothyroid 3772 29 4
ionosphere 351 34 2
optdigits 5620 64 10
sick 3772 29 2
sonar 208 60 2
spambase 4601 57 2
kr-vs-kp 3196 36 2
lung-cancer 32 57 3
mfeat 2000 76 10
molecular-biology-promoters 106 58 2
mushroom 8124 22 2
splice 3190 61 3
sponge 76 45 2

was performed with linear nearest neighbour search algorithm with Eucilidian dis-
tance function. For all datasets a stratified 10-fold cross-validation was performed.
A paired T-test was employed for testing the difference in performances of the al-
gorithms on every dataset seperately. For testing whether the difference in predic-
tive perfomance between the different methods is statisticaly significant over all
datasets, we use the Wilcoxon test [13] that is sugested in [14].

5 Results and Discussion

In this section we present the results of the experiments. We first present the results
of using the J48 decision tree algorithm as base-level classifier then the the JRip
rule learner as a base-level classifier and nearest neighbor algorithm IBk.

In Table 6, we present the percentage of correctly classified instances using J48
as base-level classifier. A statistical comparison was performed with the SubBag
method. From the results we can see that the SubBag method is on average compa-
rable with random forests and performs better than random subspace method and
bagging.Random forests preform statisticallybetter than SubBag for the cylinder-
bands and sonar datasets. Bagging performs statistically better than SubBag on
one dataset, kr-vs-kp. The last column shows the percentage of correctly classi-
fied instances for the baseline algorithm J481. It is obvious from the results that all
ensemble methods improve the accuracy of the baseline classifier.
1 The baseline algorithm was runwith confidence parameter C=0.25 and minimumnum-

ber of instances in a leaf parameter M=2.
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Table 6. The accuracy of the methods using J48 as base-level classifier (the method
that has the best performance for a given dataset is marked in bold, results from the
performed T-test are marked with ◦ if there is statistically significant improvement or
with • if there is statistically significant degradation with as compared to to SubBag
method)

Dataset SubBag Random Bagging Random J48
subspaces forest

arrhythmia 72.36 68.81 71.92 67.48 • 64.38 •
audiology 86.23 86.70 84.45 80.04 • 77.87 •
autos 87.76 86.76 86.31 86.24 81.88
cylinder-bands 64.26 64.81 62.59 75.37 ◦ 57.78 •
dermatology 97.55 94.55 • 95.65 96.46 94.00
hepatitis 84.46 81.96 83.21 84.54 83.79
hypothyroid 99.63 99.58 99.60 99.36 99.58
ionosphere 93.46 92.32 93.17 94.03 91.46
optdigits 97.70 97.38 96.23 • 98.11 90.69 •
sick 98.67 98.99 99.05 98.41 98.81
sonar 80.79 76.93 77.43 • 87.55 ◦ 71.17
spambase 95.37 95.28 94.76 95.70 92.98 •
kr-vs-kp 99.44 99.34 99.72 ◦ 99.25 99.44
lung-cancer 70.83 77.50 70.83 67.50 77.50
mfeat 84.45 82.15 • 82.15 • 83.55 75.25 •
molecular promoters 89.55 83.73 85.45 90.45 80.82
mushroom 100.00 100.00 100.00 100.00 100.00
splice 95.27 94.83 94.61 93.48 94.08
sponge 93.57 93.57 93.57 93.75 92.50

Table 7. Comparison of the predictive performance of ensemble methods using J48 as
base-level classifier with Wilcoxon test

SubBag > Random subspaces p = 0.040043

SubBag > Bagging p = 0.001324

SubBag > Random forests p = 0.489783

SubBag > J48 p = 0.001713

In Table 7, we present the results of applying the Wilcoxon statistical test
to the accuracies achieved using J48 as a base level classifier. We compared
our proposed method with random subspaces, bagging, random forests, and the
baseline method. In the results, M1 > M2 means that method M1 has better
predictive performance than method M2. The significance is reported by adding
the corresponding p-value. From the results we can see that SubBag archives
statistically significant improvement over random subspaces, bagging and the
baseline method. SubBag performs equally well on these datasets when compared
to random forests.

In Table 8, we present the percentage of correctly classified instances using
JRip as base-level classifier. In this case SubBag was statistically compared with
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Table 8. The accuracy of the methods using JRip as base-level classifier (for notation
see Table 6 )

Dataset SubBag Random Bagging JRip
subspaces

arrhythmia 72.82 72.14 74.81 70.80
audiology 78.28 76.05 78.70 72.98
autos 83.86 83.86 85.83 73.10 •
cylinder-bands 78.15 79.07 79.26 65.19 •
dermatology 95.63 94.80 92.89 • 86.88 •
hepatitis 83.88 83.21 80.63 78.00
hypothyroid 95.57 95.71 99.42 ◦ 99.34 ◦
ionosphere 94.03 93.46 92.89 89.75 •
optdigits 98.17 97.94 97.88 90.78 •
sick 95.97 96.24 98.67 ◦ 98.22 ◦
sonar 86.55 83.10 83.67 73.07 •
spambase 93.28 92.78 94.61 ◦ 92.39
kr-vs-kp 93.74 93.09 99.47 ◦ 99.19 ◦
lung-cancer 80.83 80.83 80.83 78.33
mfeat 83.60 83.75 83.60 73.15 •
molecular promoters 88.55 80.36 87.55 82.91
mushroom 100.00 100.00 100.00 100.00
splice 93.73 92.79 96.11 ◦ 93.70
sponge 92.50 92.50 92.50 92.50

random subspace method and bagging as well as the baseline method JRip2.
From the results we can see that the SubBag method is comparable to the ran-
dom subspace method. Bagging performs statistically better on several datasets
(hypothyroid, sick, spambase, kr-vs-kp and splice) that have a large number
of training examples. The baseline method also performs statistically better on
three datasets (hypothyroid, sick and kr-vs-kp) possibly because of the included
phase of optimization and revision of the produced rules that is a part of the
RIPPER algorithm.

In Table 9 we present the results of applying the Wilcoxon statistical test
to the performance of ensemble methods using JRip as a base level classifier.
From the results we can see that SubBag achives statistically significant im-
provement over random subspaces and the baseline method. SubBag on these
datasets performs statistically worse than bagging.

In Table 10, we present the percentage of correctly classified instances using
IBk as base-level classifier. In this case SubBag was statistically compared with
the random subspace method, bagging and the baseline method IBk 3. From

2 The baseline algorithm was run with the following parameters: number of folds for
pruning F=3, minimum total weight of the instance in a rule N=2 and number of
optimizations O=2.

3 IBk algorithm was used with 1 nearest neighbor and the search was performed with
linear nearest neighbor search algorithm with Eucilidian distance function
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Table 9. Comparison of ensemble methods using JRip as base-level classifier using
Wilcoxon test

SubBag > Random subspaces p = 0.008590

SubBag < Bagging p = 0.061953

SubBag > JRip p = 3.38454e−4

Table 10. The accuracy of the methods using IBk as base-level classifier (for notation
see Table 6)

Dataset SubBag Random Bagging IBk
subspaces

arrhythmia 58.84 58.40 53.55 • 52.88 •
audiology 80.04 78.26 76.94 77.81
autos 78.88 79.86 75.93 75.93
cylinder-bands 73.70 74.44 74.44 74.44
dermatology 96.72 95.65 94.54 94.54
hepatitis 85.13 83.88 80.63 80.63
hypothyroid 94.35 94.41 91.73 • 91.52 •
ionosphere 91.17 92.60 86.33 • 86.33 •
optdigits 98.88 99.02 98.61 98.61
sick 96.29 96.58 96.24 96.18
sonar 88.50 89.48 86.10 86.57
spambase 94.07 93.91 91.26 • 90.78 •
kr-vs-kp 96.81 96.62 96.62 96.28
lung-cancer 70.83 67.50 64.17 67.50
mfeat 82.25 82.20 80.10 • 80.20 •
molecular promoters 87.82 85.73 86.09 82.27
mushroom 100.00 100.00 100.00 100.00
splice 92.04 91.82 77.27 • 74.67 •
sponge 95.00 95.00 93.57 92.14

Table 11. Comparison of ensemble methods using kNN as base-level classifier using
Wilcoxon test

SubBag > Random subspaces p = 0.331723

SubBag > Bagging p = 2.7271e−4

SubBag > kNN p = 2.7271e−4

the results we can see that the SubBag method is comparable to the random
subspace method.

In Table 11 we present the results of applying Wilcoxon statistical test to
the performance of ensemble methods using IBk as a base level classifier. From
the results we can see that SubBag achieves statistically significant improve-
ment over bagging and the baseline method. SubBag on these datasets performs
comparably well to random subspaces.
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6 Conclusion and Further Work

In this work we present a new method for constructing ensembles of classifiers
in which new learning sets are generated on the basis of bagging and random
subspaces. This method was compared with other ensemble methods that use
randomization to induce classifiers (bagging, random subspace method and ran-
dom forests). Comparison was performed on 19 datasets from the UCI domain.
As base-level classifiers we used J48 decision tree, JRip rule learner and the IBk
nearest neighbor learner. By application of a paired T-test we investigated the
statistical differences between these methods in terms of classification accuracy
on every dataset separately. We also employed the Wilcoxon test to test the sta-
tistical significance of the methods over all datasets. The experimental results
obtained show that in the case of J48 as a base-level classifier, SubBag performs
comparably to random forests. The added advantage of this combination scheme
is that it is applicable to any base-level algorithm without the need to random-
ize the algorithm itself. In case of JRip as a base-level classifier our method is
statistically comparable to bagging and better than random subspace method.
For the case of IBk as a base level classifier it performs better than random
subspaces and bagging.

As further work, we plan to investigate the diversity of the members of the
ensemble of classifiers induced by our combined approach and compare it to
other ensemble methods in this respect. Another possibility to investigate is
using a different combination of bagging and random subspaces method (e.g.
bags of RSM ensembles and RSM ensembles of bags). Finally, a comparison of
bagged ensembles of randomized base-level classifiers (e.g. a randomized version
of JRip) would be of interest.
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Abstract. In this paper, we present two ensemble learning algorithms
which make use of boostrapping and out-of-bag estimation in an attempt
to inherit the robustness of bagging to overfitting. As against bagging,
with these algorithms learners have visibility on the other learners and
cooperate to get diversity, a characteristic that has proved to be an issue
of major concern to ensemble models. Experiments are provided using
two regression problems obtained from UCI.

Keywords: Ensemble Methods, Bagging, Ensemble Diversity, Regres-
sion Estimators, Neural Networks, Out-of-bag Estimation.

1 Introduction

Ensemble algorithms are general methods to improve the performance of a base
learning algorithm, which are actually applied to a great variety of problems
including classification, clustering and regression, which is the focus of this paper.
Given a set of examples S = {(xk, yk); k = 1, . . . , m}, an ensemble algorithm
generates a set of predictors H = {f1, f2, . . . , fn} by training a base learner L.
Then it builds a new predictor F by aggregating the predictors in H , using for
example linear combinations.

A well-studied method of this family is Bagging, introduced by Breiman in
[2]. In Bagging, the set of predictors is generated by training L with a sequence
of bootstrap datasets S1, S2, . . . , Sn, randomly drawn from the original training
set S. These predictors are then combined (averaged in regression) to obtain
what is called the bagged predictor. A commonly accepted explanation for the
ability of Bagging to improve the generalization performance of the base model,
is that it could effectively reduce its variance. Recent works [11] [12] have however
shown that Bagging can work without reducing variance. They argue that the
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action of Bagging is to control the effective influence of training examples in
the estimation process, through an adequate sampling of them. This argument
is consistent with some attempts to relate the stability of the base algorithm L
and the stability of the bagged algorithm [13] [8].

It is interesting to note that the benefits of the random sampling, characteristic
of bagging, could be applied to other ensemble algorithms. For example in [10],
Friedman proposes to incorporate uniform random subsampling, at each stage of
the Gradient Boosting algorithm. Another interesting observation with bagging
is that roughly a fraction 0.368 of the training examples do not appear in a
particular bootstrap sample. As noted by Breiman [3], these out-of-bag examples
are unused test examples for the predictor constructed with the corresponding
sample, and can be used to make accurate estimates of quantities of interest. In
[4] for example, Breiman proposes a new form of bagging called Iterated Bagging
that exploits this observation.

In this paper we present two algorithms which make use of random sampling
and out-of-bag estimates. We start by presenting in section 2, an ensemble learn-
ing algorithm where a set of learners is trained to cooperate and to obtain diverse
generalization patterns, that is a characteristic that has proved to be an issue
of major concern to ensemble models [5]. In section 3 we show how to incorpo-
rate random sampling to this algorithm in an attempt to inherit the robustness
of bagging to overfitting. As against bagging, with this algorithm learners have
visibility on predictions of the other learners and cooperate to get diversity. In
section 4 we introduce the use of out-of-bag estimates on the algorithm from the
previous section. Resultant algorithm is similar to Iterated Bagging, but uses
different targets at each stage and iterations are carried out on the same layer of
learners. In the final section we provide experimental results on two regression
datasets obtained from UCI[1].

2 Diversity and Negative Correlation Learning

Several works have shown that a key characteristic of ensemble models, to get real
improvements of combining predictors, is diversity of their component members.
For regression estimation, a way to quantify diversity is the so called Ambiguity
Decomposition. Let F be, an ensemble obtained as a convex combination of n
predictors, that is

F (x) =
n∑

i=1

wifi(x) (1)

Hence1,

(F − y)2 =
n∑

i=1

wi(y − fi)2 −
n∑

i=1

wi(fi − F )2 (2)

This decomposition states that the quadratic loss of the ensemble not only de-
pends on the individual errors but also on the variability of the individual predic-
tions fi around the ensemble prediction F . Ambiguity decomposition suggests
1 To simplify notation we usually replace F (x) and fi(x) by F and fi respectively.
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that individual learners should be trained considering information about the
other learners to get diversity, which can be quantified and measured as the
second term in (2). For example, in the Negative Correlation Algorithm (NC),
described in [17], the i-th learner is trained considering the objective function

NCErrori = (y − fi)
2 − λ (fi − F )2 (3)

where the parameter λ weights the importance of the diversity component. As
noted in [5], if the predictors in the ensemble are uniformly weighted, we obtain
that

NCErrori = (y − fi)
2 + λ

∑

j �=i

(fi − F ) (fj − F ) (4)

If λ = 0 each learner is trained independently. In [5] a theoretical argument is
presented to choose λ according to λ = 2 · γ · (1− 1/n) where n is the size of the
ensemble and the value of γ ∈ [0, 1] is problem dependent.

The authors have previously shown in [14] that and alternative decomposition
of the quadratic loss of F is the following

(F − y)2 =
n∑

i=1

w2
i (y − fi)2 +

n∑

i=1

∑

j �=i

wiwj(fi − y)(fj − y) (5)

It should be noted that in this decomposition, diversity (second term of the
right hand side) is measured in terms of error correlations instead of hypothesis
deviations around the ensemble. If the ensemble is uniformly weighted, it is hence
reasonable to train each learner with the training function

NegCorrErri = (y − fi)2 + λ
∑

j �=i

(fi − y)(fj − y) (6)

where λ > 0 controls the tradeoff between diversity and individual accuracy.

1: Let S = {(xk, yk); k = 1, . . . , m} be a training set.
2: Let {fi; i = 1, . . . , n} be a set of n learners and f t

i the function implemented by
the learner fi at time t = 0, . . . , T .

3: Make one epoch on the learner fi with the training set S and the squared loss
function to obtain the initial functions f0

i .
4: for t = 1 to T
5: for i = 1 to M
6: Make one epoch on the learner fi with S and the loss function

NegCorrErrt
i(fi(x), y) = (y − fi(x))2 + λ

∑

j �=i

(fi(x) − y)
(
f t−1

j (x) − y
)

7: end for
8: Set the ensemble predictor at time t to be F t(x) = 1/n

∑n
i=1 f t

i (x)
9: end for

Fig. 1. Algorithm I
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In Algorithm (I) the learners of the ensemble are synchronously trained based
on the loss function (6). Note that at iteration t the diversity component is
computed using the predictions of the other learners obtained at the previous
iteration. Hence the algorithm consider one stage where the learners share infor-
mation about their predictions and one stage where the learners are adjusted.

3 Bootstrapping Negative Correlation

In [2] Breiman presents bagging as a procedure capable to reduce the variance
of regression predictors. In [12] and [11] however, Grandvalet provides exper-
imental evidence supporting the hypothesis that bagging stabilizes prediction
by controlling the influence of training examples, and can reduce the testing
error without reducing variance. According to this explanation, the action of
bagging is to equalize the effective influence of each example in the estimation
process carried out by the learning algorithm, in a way such that highly influ-
ential points (the so called leverage points) are down-weighted. As stated by
Grandvalet, the positive or negative consequences of this action depends on the
goodness/badness of leverage. Since in most situations, leverage points are badly
influential, for example they are outliers, bagging can improve generalization by
making robust an unstable base learner. From this point of view, bootstrapping
the base learner has an effect similar to robust M-estimators where the influence
of sample points is (globally) bounded using robust loss functions.

The latter explanation about the success of bagged predictors is consistent
with others studies that make a connection between the (algorithmic) stability
of the base algorithm and the stability of the bagged algorithm [13] [8]. Roughly
speaking, certain resampling strategies allow poorly stable algorithms become
strongly stable. Strong algorithms provide fast rates of convergence from the
empirical error to the true expected prediction error.

The key fact in the previous analyses is that bootstrapping allows some points
affect only a subset of learners in the ensemble. It seems counterintuitive however,
that bootstrap has the ability to selectively reduce the influence of leverage
points, in particular badly influential points, since in uniform resampling all
the points have the same probability of being selected. The explanation is that
leverage points are usually isolated in the feature space. To remove the influence
of a leverage point it is enough to eliminate this point from the sample but to
remove the influence of a non-leverage point we must in general remove a group
of observations. In other words, non-leverage points correspond to local patterns
represented by more than one example. Now, the probability that a group of size
K be completely ignored by bagging is (1−K/m)m which decays exponentially
with K. For K = 2 for example (1−K/m)m ∼ 0.14 while (1− 1/m)m ∼ 0.368.
This means that bootstrapping allows the ensemble predictions (and hence the
learning process itself) depend mainly on “common” examples, which in turns
allows to get a better generalization.
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We have seen that ensemble learning can be achieved by training each learner
with an objective function that represents a compromise between the individual
accuracy and diversity in terms of error correlations (algorithm I). This seems
reasonable, because this explicitly encourages mutual cooperation between the
learners. It should be noted however, that bagging does not provide such kind of
mutual cooperation. On the other hand, algorithm (I) not only does not prevent
the potentially bad effect of leverage points but propagates this effect through
the whole ensemble. When a point induces a significant error for a predictor, the
other predictors will try to compensate this error. In other words, the ensemble
predictions could strongly depend on “unusual” examples, then compromising
the generalization performance of the ensemble.

To combine the key characteristics of both algorithms: mutual cooperation
of algorithm (I) and robustness of bagging due to the ability of bootstrapping
to equalize the influence of the examples, we propose to modify algorithm (I)
in a way such that each learner works with a bootstrap sample of the original
training set. The result is exposeddescribed as algorithm (II).

1: Let S = {(xk, yk); k = 1, . . . , m} be a training set.
2: Let {fi; i = 1, . . . , n} be a set of n learners and f t

i the function implemented by
the learner fi at time t = 0, . . . , T .

3: Generate n bootstrap samples Si, i = 1, . . . , n from S.
4: Make one epoch on the learner fi with the training set Si and the squared loss

function to obtain the initial functions f0
i .

5: for t = 1 to T
6: for i = 1 to M
7: Make one epoch on the learner fi with Si and the loss function

NegCorrErrt
i(fi(x), y) = (y − fi(x))2 + λ

∑

j �=i

(fi(x) − y)
(
f t−1

j (x) − y
)

8: end for
9: Set the ensemble predictor at time t to be F t(x) = 1/n

∑n−1
i=0 f t

i (x)
10: end for

Fig. 2. Algorithm II: Bootstrapped Negative Correlation

With this algorithm, each learner is iteratively trained on its own training
set, as with bagging, but at each iteration it takes into account the diversity
component used within algorithm (I). Hence, this algorithm can be viewed as
a coupled bagging, where each leaner has visibility on the predictions of the
other learners. However, since each learner is trained only with the examples
contained in Si, highly influential points have a restricted effective influence on
the ensemble, which should allow to inherit the generalization power of bagging.
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4 Using Out-of-Bag Residuals to Compute Diversity

At the t-th iteration of algorithm (I), each learner fi of the ensemble is trained
to minimize over the training set S the following objective function

NegCorrErrti(fi(x), y) = (y − fi(x))2 + λ
∑

j �=i

(fi(x) − y)
(
f t−1

j (x) − y
)

(7)

It should be noted that for a single fixed example (xk, yk) optimality implies

2(yk − f t
i (xk)) + λ

∑

j �=i

(f t
i (xk)− yk)(f t−1

j (xk)− yk) = 0 (8)

that is f t
i (xk) = ỹk, where

ỹk = yk + λ′rt−1
i (k) (9)

where in turns λ′ = λ/2 and

rt−1
i (k) =

∑

j �=i

(
f t−1

j (xk)− yk

)
(10)

Note that rt−1
i (k) corresponds (except for a constant) to the averaged error of

F (i) in the prediction of yk, where F (i) is the set of predictors in F , with the
i-th one removed. In equations, rt−1

i (k) = (n− 1)
(
F (i)(xk)− yk

)
.

Equation (9) shows that training fi with S and the objective function (7) is
equivalent to train fi with the standard squared loss, and the set of modified
examples S̃ = {(xk, ỹk); k = 1, . . . , m}, where ỹk is defined in equation (9).

Note now, that ỹk is the original target yk with the additional additive term
rt−1
i (k) representing the residual of the ensemble without the learner fi in pre-

dicting the training example yk.
It is well-known however that training set residuals have a significant tendency

to be too small, since the model is being trained to make these residuals as small
as possible. This implies that they are in general overly optimistic estimates of
the generalization error of the model. In general, for typical loss functions l, the
empirical error R̂ = 1/m

∑
k l(f(xk, yk)) tends to be a down biased estimator of

the true generalization error R = E[l(f(x), y)], and hence the pseudo residual
δR̂/δf is not a good estimator of the true prediction error landscape at f .

A more realistic estimator of the generalization error, widely used in the ma-
chine learning community, is the leave-one-out cross validation estimate. For any
example (xk, yk) let be f−k the function obtained training an algorithm with the
training set without this example. The leave-one-out cross validation estimate
of the generalization error of the algorithm is then defined to be

R̂loo =
1
m

m∑

k=1

l(f−k(xk), yk) (11)
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Hence, a more realistic estimator of the residual of F (i) at a point (xk, yk) could
be obtained by computing the error of F (i) in this point after training with a
sample without (xk, yk). If we repeat this procedure M times, the mean of these
residuals gives a unbiased estimate of the bias of the model F (i) in this point.
Computing requirements of this procedure are of course large.

Consider however algorithm (II). With this algorithm, each learner works
with a bootstrap sample Si of the original sample S. Approximately a fraction
(1 − 1/m)m (∼ 0.368) of the examples of S does not appear in the particular
sample Si, and hence these examples can be considered test examples for the
learner i, which can be used to make accurate estimates of quantities of interest.
This idea has been introduced by Breiman in [3] under the name of out-of-bag
estimation. In [4] for example, Breiman proposes a new form of bagging called It-
erated Bagging designed to simultaneously reduce regressors bias and variance.
The algorithm works in stages - the first stage is bagging. A second stage of
bagging is then carried out (with new learners) using the out-of-bag estimates
of the residuals of the first stage as targets. This procedure is iterated until a
stopping criterion is satisfied. Breiman concludes that experimental results of it-
erated bagging are comparable to the best results obtained using (highly tuned)
Support Vector Regression Machines [6] while in [15] Suen et al. show that it
exhibits better generalization patterns that Stochastic Gradient Boosting, a tech-
nique introduced by Friedman in [10] consisting basically in the randomization
of Gradient Boosting [9].

Now, we propose to compute the residuals rt−1
i (k) of equation (9) using the

out-of-bag procedure of Breiman, that is, instead of computing the residual
rt−1
i (k) considering F (i) we look for the learners fj in F (i) for which the ex-

ample (xk, yk) is not contained in Sj - the bootstrap sample corresponding to
this learner. The out-of-bag estimate of rt−1

i (k) is hence defined to be

r̂t−1
i (k) =

∑

j∈Cik

(
f t−1

j (xk)− yk

)
(12)

where Cik = {j 
= i/(xk, yk) /∈ Sj}. With this estimate of the residual, the target
used to train the learner at iteration t results

ŷk = yk + λ′r̂t−1
i (k)

= yk + λ′ ∑

j∈Cik

(
f t−1

j (xk)− yk

)
(13)

It should be noted that training the learners with the set of modified examples
Ŝ = {(xk, ŷk); k = 1, . . . , m} and the squared loss function, results in turns
equivalent to optimize at each iteration the following objective function

oobErrti(fi(x), y) = (y − fi(x))2 + λ
∑

j∈Ci(x,y)

(fi(x)− y)
(
f t−1

j (x)− y
)

(14)

where Ci(x, y) = {j 
= i/(x, y) /∈ Sj}. Note that now, the diversity component of
the objective function, that encourages negative error correlation on the ensem-
ble, is computed considering only the learners that have not seen the example
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1: Let S = {(xi, yi); i = 1, . . . , m} be training set.
2: Let fi i = 0, . . . , n − 1 be a set of n learners and f t

i the function implemented by
the learner fi at time t = 0, . . . , T .

3: Generate n bootstrap samples Si, i = 1, . . . , n from S.
4: for t = 1 to T
5: Make one epoch on the learner fi with the learning function oobErrt

i(fi(x), y)
as defined in equation (14), and the set of examples Si.

6: Set the ensemble predictor at time t to be F t(x) = 1/n
∑n−1

i=0 f t
i (x)

7: end for

Fig. 3. Algorithm III: Self-iterated bagging with negative correlation

(x, y). This suggests that a possibly more realistic estimate of the amount of
diversity existing in the ensemble for prediction purposes might be used. The
resulting procedure is summarized as algorithm (III).

Two fundamental differences distinguish the proposed algorithm from Iter-
ated Bagging. At each iteration, algorithm (III) uses the same set of learners -
just a new training epoch on each learner is carried out considering the resid-
uals of the previous iteration. On the other hand, learners are not designed to
approximate the residuals but to optimize the objective function (14) which in
turns is equivalent to learn the modified targets (13) computed using the out-
of-bag estimates of rt−1

i (k). This in fact makes possible to use the same set of
learners at each stage. Considering these point of views, algorithm (III) can be
considered a self-iterated bagging with coupled learners, that is learners that
cooperate to get diversity.

5 Experimental Results

In this section we present results of empirical studies to evaluate the proposed
algorithms. In the whole set of experiments, two real and well-known data sets
were used, namely Boston and NO2. A detailed description of these data sets
can be obtained from [1] and [16] respectively. For comparison purposes, five al-
gorithms will be evaluated: Bagging, Negative Correlation (NC), algorithm (I),
algorithm (II), and algorithm (III). In addition, neural networks with two sig-
moidal hidden units and trained with standard backpropagation were employed
as base learners. For each experiment, t-student confidence intervals will be re-
ported with a significance of 0.02 obtained after 10 simulations. The estimation
process is carried out with a 75% of the available observations and testing with
the rest 25%.

The NC algorithm depends on the parameter γ defined in section 2. Similarly
algorithms (I), (II), and (III) depend on parameter λ. Due to space limitations,
we cannot report exhaustively the results obtained with different constants, and
hence we only present the best results obtained with the parameters which show
the lower testing error (we don’t use a validation set).
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Table 1. Experimental results on the Boston Housing dataset

N NC Bagging Alg.I Alg.II Alg.III
Training Set

20 8.44 ∼ 8.69 10.66 ∼ 10.79 10.98 ∼ 11.23 9.22 ∼ 9.33 8.76 ∼ 8.88

30 7.99 ∼ 8.26 10.58 ∼ 10.72 11.11 ∼ 11.46 9.27 ∼ 9.36 9.12 ∼ 9.36

40 7.98 ∼ 8.19 10.53 ∼ 10.65 11.95 ∼ 11.19 8.89 ∼ 8.97 8.65 ∼ 8.75

Testing Set
20 13.79 ∼ 14.30 13.97 ∼ 14.93 14.89 ∼ 15.38 12.50 ∼ 12.90 12.75 ∼ 13.22

30 13.19 ∼ 13.61 13.89 ∼ 14.86 15.17 ∼ 15.76 13.02 ∼ 13.46 12.69 ∼ 13.13

40 13.87 ∼ 14.22 13.73 ∼ 14.19 14.86 ∼ 15.36 12.81 ∼ 13.25 12.89 ∼ 13.36

Table 2. Experimental results on the NO2 dataset

N NC Bagging Alg.I Alg.II Alg.III
Training Set

20 .2507 ∼ .2608 .2457 ∼ .2470 .3041 ∼ .3220 .2290 ∼ .2306 .2327 ∼ .2345

30 .2431 ∼ .2538 .2451 ∼ .2466 .3058 ∼ .3237 .2336 ∼ .2346 .2333 ∼ .2349

40 .2388 ∼ .2467 .2453 ∼ .2467 .3044 ∼ .3216 .2306 ∼ .2316 .2338 ∼ .2306

Testing Set
20 .2832 ∼ .2970 .2486 ∼ .2531 .2990 ∼ .3171 .2419 ∼ .2459 .2441 ∼ .2466

30 .2973 ∼ .3137 .2469 ∼ .2511 .3011 ∼ .3189 .2451 ∼ .2485 .2501 ∼ .2541

40 .2905 ∼ .3005 .2473 ∼ .2517 .2923 ∼ .3099 .2415 ∼ .2462 .2458 ∼ .2500

Table (1) shows confidence intervals for the mean squared error (mse) of the
algorithms versus the number of learners (N) in the ensemble, obtained with
the Boston Housing dataset. For this problem, the best value of γ, for the NC
algorithm was found at γ = 0.5. For algorithms (I), (II), and (III), on the other
hand, the best values of λ were found at λ = 0.8, λ = 0.7 and λ = 0.8 respectively.

Table (2) shows confidence intervals for the mse of the algorithms versus the
number of learners in the ensemble, obtained with the NO2 dataset. For this
problem, the best value of γ for the NC algorithm was found at γ = 0.5. The
best value of λ was found at 0.6 for the three algorithms (I), (II), and (III).

6 Conclusions and Final Remarks

In this paper we have presented two algorithms that explicitly encourage diversity
and use bootstrapped samples in order to improve generalization performance.
The algorithms are constructed using ideas from the negative correlation algo-
rithm and bagging. Experiments with neural networks ensembles in two real data
sets allow us to conclude that the algorithm (II) exhibits the best generalization
patterns between the five simulated algorithms, except only for one setting (30
learners with the Boston Housing problem) in which the algorithm (III) shows
the best result. Algorithm (III) also tends to show better testing results than Bag-
ging, Negative Correlation and algorithm (I). In the NO2 dataset for example,
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the relative improvement with respect to Negative Correlation is significant. This
latter algorithm also shows the worst difference between training and testing per-
formance, in both datasets. All of these observations confirm the hypothesis that
bootstrapping can help to obtain more robust estimators to overfitting. The use of
out-of-bag estimates of the residuals however, does not improve the performance
of algorithm (II). This could be due to the number of learners in the ensemble,
which makes the out-of-bag estimates rely on a small subset of predictors. Future
work has then to include a more exhaustive experimental analysis of the behavior
of the proposed algorithms with a greater number of predictors. An alternative
approach could be to combine the out-of-bag estimates of the residuals with the
estimates computed as in algorithm (II), in an approach similar to the 0.632 boot-
strap estimator of the prediction error [7].
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Abstract. The paper presents new developments in an extension of
Codd’s relational model of data. The extension consists in equipping do-
mains of attribute values with a similarity relation and adding ranks to
rows of a database table. This way, the concept of a table over domains
(i.e., relation over a relation scheme) of the classical Codd’s model ex-
tends to the concept of a ranked table over domains with similarities.
When all similarities are ordinary identity relations and all ranks are
set to 1, our extension becomes the ordinary Codd’s model. The main
contribution of our paper is twofold. First, we present an outline of a re-
lational algebra for our extension. Second, we deal with implementation
issues of our extension. In addition to that, we also comment on related
approaches presented in the literature.

1 Introduction

1.1 Motivation and Outline of the Paper

Most of the current database systems are based on the well-known Codd’s re-
lational model of data: “A hundred years from now, I’m quite sure, database
systems will still be based on Codd’s relational foundation.” [9, p. 1]. Main
virtues of Codd’s model are due to the reliance of the model on a simple yet
powerful mathematical concept of a relation and first-order logic: “The relational
approach really is rock solid, owing (once again) to its basis in mathematics and
predicate logic.” [9, p. 138].

Our paper is concerned with a particular extension of the relational model
which is concerned with imprecision and uncertainty. Management of uncertainty
and imprecision is one of the six currently most-important research directions
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Table 1. Ranked data table over domains with similarities

D(t)

1.0

1.0

0.9

0.8

0.4

0.3

name age education
Adams 30 Comput. Sci.

Black 30 Comput. Eng.

Chang 28 Accounting

Davis 27 Comput. Eng.

Enke 36 Electric. Eng.

Francis 39 Business

n1 ≈n n2 =

{
1 if n1 = n2

0 if n1 �= n2

a1 ≈a a2 = sa(|a1 − a2|)
with scaling sa : Z

+ → [0, 1]

≈e A B CE CS EE

A 1 .7
B .7 1
CE 1 .9 .7
CS .9 1 .6
EE .7 .6 1

proposed in the report from the Lowell debate by 25 senior database researchers
[1]: “. . . current DBMS have no facilities for either approximate data or imprecise
queries.” Similarity, approximate matches, similarity-based queries, and related
issues are the main motivations for our extension of the relational model. These
issues are not new and have been approached in numerous papers in the past.
The issues result in situations when one considers similarity of elements of do-
mains rather than exact equality, i.e. when it is desirable to consider degrees of
similarity rather than just “equal” and “not equal”. For example, consider at-
tribute age. The corresponding domain consists of positive integers. One might
be interested in all persons in a given database with age equal to 30. Such a
query is typical in the classical relational model (in terms of relational algebra:
selection of all tuples with attribute age = 30). One might, however, be also
interested in all persons in the database with age approximately 30. Intuitively,
a person with age 30 satisfies this query completely (degree of satisfaction is
1.0), a person with age 29 satisfies this query rather well (degree of satisfaction
is, say, 0.9), a person with age 25 satisfies this query but only to a small degree
(say, 0.2), etc. The above degrees are, in fact, degrees of similarity, see [23], of
the actual age to the reference age 30, i.e. 1.0 is a degree of similarity of 30 to
30, 0.9 is a degree of similarity of 29 to 30, 0.2 is a degree of similarity of 25
to 30. Of course, the degrees depend on how the similarity relation is defined.
The above example, however simple, clearly demonstrates that taking similarity
into account leads to qualitatively new features in querying and manipulation
of data. Our attempt in previous papers as well as in this paper is to develop
systematically an extension of the classical Codd’s relational model which would
play the same role in case when similarities are considered as the ordinary Codd’s
model plays in the classical case.

The main concept in our approach is that of a ranked data table (relation)
over domains with similarities, see Tab. 1. This concept is our counterpart to the
concept of a data table (relation) over domains of a classical relational model.
A ranked data table over domains with similarities consists of three parts: data
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table (relation), domain similarities, and ranking. The data table (right top ta-
ble in Tab. 1) coincides with a data table of a classical relational model. Domain
similarities and ranking are what makes our model an extension of the clas-
sical model. The domain similarities (bottom part of Tab. 1) assign degrees of
similarity to pairs of values of the respective domain. For instance, a degree of
similarity of “Computer Science” and “Computer Engineering” is 0.9 while a
degree of similarity of “Computer Science” and “Electrical Engineering” is 0.6.
The ranking assigns to each row (tuple) of the data table a degree of a scale
bounded by 0 and 1 (left top table in Tab. 1), e.g. 0.9 assigned to the tuple
〈Chang, 28, Accounting〉. The ranking allows us to view the ranked table as an
answer to a similarity-based query (rank = degree to which a tuple matches a
query). For instance, the ranked table of Tab. 1 can result as an answer to query
“show all candidates with age about 30”. In a data table representing stored
data (i.e. prior to any querying), ranks of all tuples of the table are equal to 1.
Therefore, the same way as tables in the classical relational model, ranked tables
represent both stored data and outputs to queries. This is an important feature
of our model.

We use fuzzy logic as our formal framework. We use a formal system of first-
order fuzzy logic the same way as the system of first-order classical logic is used
in the classical relational model. This way, our model keeps the user-friendly
symbolical character of the classical model and adds a quantitative layer which
takes care of the management of uncertainty. This is an important distinction
from other “fuzzy approaches” to the relational model which, from our point of
view, are often ad-hoc.

In our previous papers, we developed selected issues within the framework of
our extension, e.g., functional dependencies, computation of non-redundant sets
of functional dependencies, Armstrong-like axiomatization, and related issues
are studied in [2,3,4,5].

In the present paper, we focus on relational algebra for our extension of the
relational model. In particular, we present an overview of operations of the rela-
tional algebra, present illustrative examples and selected results on properties of
the relational algebra. In addition to that, we focus on the problem of implemen-
tation of our extension. Section 1.2 briefly reviews related approaches. Section
1.3 summarizes preliminaries from fuzzy logic. In Section 2.1 we introduce our
model. Section 2.2 presents relational algebra and related results. Section 2.3
deals with implementation of our relational model. Section 3 outlines future re-
search.

1.2 Related Approaches

The first paper on a “fuzzy approach” to the relational model is [7]; [6] provides
an overview with many references. We found over 100 contributions related to
“fuzzy approach” to the relational model. A main feature of almost all of the
approaches is that they are ad-hoc in that an analogy of a clear relationship be-
tween a relational model and first-order fuzzy logic is missing in the approaches
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which leads to the impression of arbitrariness of the approaches. This is partly
because fully fledged logical calculi have not been developed until quite recently,
see e.g. [12,13]. On the other hand, several ideas including some of those pre-
sented in our paper were already discussed in the literature. For instance, the
idea of considering domains with similarity relations goes back to [7]. The idea
of assigning ranks to tuples appeared in [21] although with not quite a clear
meaning of ranks (“fuzzy measure of association among a set of domain values”
[21]).

1.3 Preliminaries

We use fuzzy logic to represent and manipulate truth degrees of propositions
like “u is similar to v”. Moreover, we need to process (aggregate) the degrees.
For instance, consider a query “show all candidates which are about 30 years old
and a degree in specialization similar to Computer Science”. According to Tab. 1,
Davis satisfies subqueries concerning age and education to degrees 0.8 and 0.9,
respectively. Then, we combine the degrees using a fuzzy conjunction connective
⊗ to get a degree 0.8⊗ 0.9 to which Davis satisfies the conjunctive query.

When using fuzzy logic, we have to pick an appropriate scale L of truth
degrees (which serve e.g. as grades for evaluating similarity of two objects) and
appropriate fuzzy logic connectives (conjunction, implication, etc.). We follow a
modern approach in fuzzy logic in that we take an arbitrary partially-ordered
scale 〈L,≤〉 of truth degrees and require the existence of infima and suprema
(for technical reasons, to be able to evaluate quantifiers). Furthermore, instead
of taking one particular fuzzy conjunction ⊗ and fuzzy implication →, we take
any ⊗ and → which satisfy certain conditions. This way, we obtain a structure
L = 〈L,≤,⊗,→, . . . 〉 of truth degrees with logical connectives. Although more
general than one particular choice of a scale and connectives, such an approach
is easier to handle theoretically and supports the symbolical character of our
model. Technically speaking, our structure of truth degrees is assumed to be a
complete residuated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉, see [12,13] for details.

A favorite choice of L is L = [0, 1] or a subchain of [0, 1]. Examples of pairs of
important pairs of adjoint operations are �Lukasiewicz (a⊗ b = max(a+ b−1, 0),
a → b = min(1 − a + b, 1)), and Gödel (a ⊗ b = min(a, b), a → b = 1 if a ≤ b,
a → b = b else). Note that a special case of a complete residuated lattice is a
two-element Boolean algebra of classical (bivalent) logic.

Having L, we define usual notions [12,13,15]: an L-set (fuzzy set) A in universe
U is a mapping A : U → L, A(u) being interpreted as “the degree to which u
belongs to A”. The operations with L-sets are defined componentwise. Binary
L-relations (binary fuzzy relations) between X and Y can be thought of as L-sets
in the universe X×Y . A fuzzy relation E in U is called reflexive if for each u ∈ U
we have E(u, u) = 1; symmetric if for each u, v ∈ U we have E(u, v) = E(v, u).
A reflexive and symmetric fuzzy relation is called a similarity. We often denote a
similarity by ≈ and use an infix notation, i.e. we write (u ≈ v) instead of ≈(u, v).
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2 Relational Algebra and Implementation of Relational
Model over Domains with Similarities

2.1 Ranked Tables over Domains with Similarities

We use Y for a set of attributes (attribute names) and denote the attributes by
y, y1, . . . ; L denotes a fixed structure of truth degrees and connectives.

Definition 1. A ranked data table over domains with similarity relations (with
Y and L) is given by

– domains : for each y ∈ Y , Dy is a non-empty set (domain of y, set of values
of y);

– similarities: for each y ∈ Y , ≈y is a binary fuzzy relation (called similarity)
in Dy (i.e. a mapping ≈y: Dy ×Dy → L) which is reflexive (i.e. u ≈y u = 1)
and symmetric (u ≈y v = v ≈y u);

– ranking: for each tuple t ∈ ×y∈Y Dy, there is a degree D(t) ∈ L (called rank
of t in D) assigned to t.

Remark 1. (1) D can be seen as a table with rows and columns corresponding
to tuples and attributes, like in Tab. 1. Ranked tables with similarities represent
a simple concept which extends the concept of a table (relation) of the classical
relational model by two features: similarity relations and ranks. In the classical
relational model, similarity relations are not present.

(2) t[y] denotes a value from Dy of tuple t on attribute y. We require that
there is only a finite number of tuples with non-zero degree. If L = {0, 1} and if
each ≈y is ordinary equality, the concept of a ranked data table with similarities
coincides with that of a data table over set Y of attributes (relation over a
relation scheme Y ) of a classical model.

(3) Formally, D is a fuzzy relation between domains Dy (y ∈ Y ). Rank D(t)
is interpreted as a degree to which the tuple t satisfies requirements posed by a
query. A table D representing just stored data, i.e. data prior to querying, has
all the ranks equal to 0 or to 1, i.e. D(t) = 0 or D(t) = 1 for each tuple t. Here
again, D can be thought of as a result of a query, namely, a query “show all
stored data”.

2.2 Relational Algebra

In the classical model, relational algebra is based on the calculus of classical
relations. In the same spirit, since ranked tables are in fact fuzzy relations, our
relational algebra is based on the calculus of fuzzy relations [12,15]. Due to the
limited scope, we present only selected parts of our algebra and leave details and
further parts to a full version of the paper.
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Table 2. Ranked tables over domains with similarities

D1(t)

1.0

0.9

0.1

name age education
Black 30 Comput. Eng.

Chang 28 Accounting

Francis 39 Business

D2(t)

1.0

0.8

0.5

0.4

0.3

name age education
Adams 30 Comput. Sci.

Davis 27 Comput. Eng.

Black 30 Comput. Eng.

Enke 36 Electric. Eng.

Francis 39 Business

Operations of our relational algebra can be basically classified as follows.

Counterparts to Boolean operations of classical model. These are operations like
union, intersection, etc. For instance, a union D1 ∪D2 of two ranked tables with
similarities, D1 and D2, is defined by

[D1 ∪ D2](t) = D1(t) ∨ D1(t).

This says that a rank of t in D1 ∪D2 is given by taking a rank of t in D1 and a
rank of t in D2, and applying ∨ to these ranks. In most situations, ∨ coincides
with maximum. Therefore, [D1∪D2](t) is just the maximum of D1(t) and D2(t).
For example, the ranked table D from Tab. 1 is a result of union of ranked tables
D1 and D2 depicted in Tab. 2, i.e. D = D1 ∪D2.

More generally, for any binary (and similar for other arities) operation �
with fuzzy relations, we define a corresponding operation (denoted again) �
which yields for any two ranked tables D1 and D2 (with common Y , domains,
and similarities) a ranked table D assigning to any tuple t a rank D(t) defined
componentwise by

D(t) = D1(t)�D2(t).

New operations based on calculus of fuzzy relations. The calculus of fuzzy rela-
tions contains operations which either have no counterparts with classical rela-
tions or the counterparts are trivial. An interesting example is a so-called a-cut
of a fuzzy relation. For a ranked table D and a rank a ∈ L, an a-cut of D is a
ranked table aD defined by

[aD](t) =
{

1 if D(t) ≥ a,
0 otherwise.

That is, aD is a non-ranked table which contains those tuples of D with ranks
greater or equal to a. This is quite a natural operation for manipulation of
ranked tables which allows the user to select only a part of a query result given
by threshold a.

Note that in combination with intersection, we can use a-cut to get the part
of D with ranks at least a, i.e. we can get Abovea(D) defined by

[Abovea(D)](t) =
{
D(t) for D(t) ≥ a,
0 otherwise.

Namely, we have
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Table 3. Results of Above0.7 and σe=CE applied to D from Tab. 1

[Above0.7(D)](t)

1.0

1.0

0.9

0.8

name age education
Adams 30 CS

Black 30 CE

Chang 28 AC

Davis 27 CE

D(t)

1.0

0.9

0.8

0.1

name age education
Black 30 CE

Adams 30 CS

Davis 27 CE

Enke 36 EE

Lemma 1. For D, a ∈ L, we have Abovea(D) = D ∩ aD.

For instance, Above0.7(D) for D from Tab. 1 is depicted in Tab. 3 (left).

Counterparts to selection, join, projection, etc. These operations stem basically
from the classical ones by taking into account similarity relations (or, in general
fuzzy relations θ in place of classical comparators). For illustration, we consider
only a similarity-based selection and a similarity-based join.

The basic form of selection works as follows. Given a value u ∈ Dy, a select
operator with inputs y = u yields a ranked table σy=u(D) for which a rank of a
tuple t ∈ ×y∈Y Dy is given by

D(t)⊗ (t[y] ≈y u),

i.e.
[σy=u(D)](t) = D(t) ⊗ (t[y] ≈y u),

[σy=u(D)](t) can be read as follows: One takes a degree D(t) (rank of t in D)
and a degree t[y] ≈y u (degree of similarity between t[y] and u) and applies a
“fuzzy conjunction” ⊗ to D(t) and t[y] ≈y u. That is, a rank of t in σy=u(D) can
be seen as a truth degree of proposition “t is in D and the value of t in attribute
y is similar to u”. Tab. 3 (right) shows σe=CE(D) (e denotes “education”, CE
denotes “Computer Engineering”) for D from Tab. 1 for ⊗ being �Lukasiewicz
conjunction.

As in the ordinary case, selection can be extended to several input values.
Given D, a select operator with inputs given by y1 = u1, . . . , yk = uk yields a
ranked table σy1=u1,...,yk=uk

(D) for which a rank of a tuple t is given by

D(t)⊗ (x[y1] ≈y1 u1)⊗ · · · ⊗ (x[yk] ≈yk
uk),

i.e. a degree of “t is in D and value of t in y1 is similar to u1 and · · · and value
of t in yk is similar to uk”.

To illustrate similarity-based join, consider a ranked table D1 from Tab. 1
which can be thought of as a result to a query “select candidates with age about
30”) and a ranked table D2 from Tab. 4 (left) describing open positions with
required education. A similarity-based join D1 �� D2 then describes possible job
assignments. A rank [D1 �� D2](n, a, e, p) of tuple 〈n, a, e, p〉 in D1 �� D2 is given
by ∨

e1,e2
(D1(n, a, e1)⊗ (e1 ≈e e)⊗ (e ≈e e2)⊗D2(p, e2))
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Table 4. Illustration of similarity-based join

D(t)

1.0

1.0

position education
programmer Comput. Sci.

syst. technician Comput. Eng.

D(t)

1.0

1.0

0.9

0.9

name position
Adams programmer

Black syst. technician

Adams syst. technician

Black programmer

where e1, e2 range over the domain corresponding to education. That is, the join
runs not only over equal values but also over similar values. [D1 �� D2](n, a, e, p)
can be seen as a truth degree of “candidate with name n, age a, and education
e1 belongs to table D1 and e1 is similar to e2 and e2 is a required education for
position p”. The table of Tab. 4 (right) shows a result of Above0.9(D1 �� D2), cf.
above, projected to name and position.

Further operations. Among others, here belong some interesting operations stud-
ied in databases and information retrieval. As an example, consider topk which
gained a considerable interest recently, see [10,11] and also [14]. We define
topk(D) to contain the first k tuples (according to rank ordering) of D with
their ranks (if there are less than k ranks in D then topk(D) = D; and topk(D))
includes also the tuples with rank equal to the rank of the k-th tuple). Note
that topk is a part of a query language described in [19]. As presented in [4],
topk is indeed a relational operator, i.e. there is a corresponding formula in the
corresponding relational calculus which is based on first-order fuzzy logic.

Remark 2. In [4], we presented a tuple and domain relational calculi for our
relational algebra with the completeness theorem.

We obtained several results on properties of the operations of our relational
algebra which are analogous to properties of classical relational algebra. Due to
the limited scope, we present just the following properties of selection:

Lemma 2. For D and ui ∈ Dyi we have

σy1=u1,...,yk=uk
(D) = σy1=u1(· · · (σyk=uk

(D)) · · · ),
σy1=u1(σy2=u2(D)) = σy2=u2(σy1=u1(D)).

2.3 Implementation Issues

This section presents, by means of examples, considerations on and proposal of
implementation of the extended relational model. Our basic aim to make use of
existing relational database management systems (RDBMS) and to develop a
prototype implementation of the extension by ranks and similarities. We used a
RDBMS Oracle9i, query language SQL, and its procedural extension PL/SQL.
Oracle9i enables us to use stored procedures and functions. This feature enables
us to store with a database scheme some functions that can be used in SQL
queries and other SQL statements.
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We did use stored functions to implement similarity relations on particular
domains. Recall that a similarity relation on a domain Dy is, in fact, a function
of the Cartesian product Dy ×Dy into a scale L of truth degrees, e.g. into [0, 1].
For example, a function sim age implementing similarity ≈age on the domain of
ages (see Table 1) can be defined by

CREATE FUNCTION sim_age(age1 NUMBER, age2 NUMBER)
RETURN NUMBER IS

x NUMBER;
BEGIN
x := 1 - abs(age1-age2)/SCON;
IF x < 0 THEN

x := 0;
END IF;
RETURN NUMBER(x);

END sim_age;

where SCON is an appropriate scaling constant. Similarities on non-numerical
domains Dy can be implemented as relations over relation scheme given by
three attributes: y (first), y (second), and an attribute representing truth de-
grees (third). For instance, if we consider the ranked data table from Tab. 1, the
information about the similarity on the domain of education can be stored in a
data base table which is created by the following SQL command:

CREATE TABLE sim_education_tab (
val1 VARCHAR (30) NOT NULL,
val2 VARCHAR (30) NOT NULL,
degree NUMBER NOT NULL,
PRIMARY KEY (val1, val2),
CHECK (val1 < val2)

);

Notice that val1 and val2 are string attributes representing education descrip-
tions and degree is their similarity degree. Since similarity relations are re-
flexive, there is no need to store information about similarities when val1 and
val2 agree on their values. Furthermore, similarity relations are always sym-
metric. Hence, if sim_education_tab contains information about the similarity
degree for val1 = e1 and val2 = e2, there is no need to store the informa-
tion for val1 = e2 and val2 = e1. Since the domain of education descriptions,
which are encoded by strings of literals, can be lexically ordered, we can store
in sim_education_tab only records representing similarities of education val-
ues val1 = e1 and val2 = e2 such that e1 is lexically smaller than e2 and
e1 ≈e e2 > 0. The latter SQL command creates sim_education_tab with ex-
plicit constraint saying that the value of val1 should be lexically smaller than
the value of val2 which reflects the organization of the data table just men-
tioned. The table sim_education_tab has a primary key {val1, val2}. In most
RDBMS the definition of such a primary key is accompanied by creation of
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a unique multi-column index which can significantly improve the efficiency of
querying sim_education_tab regarding the similarity degree. Following the ex-
ample from Tab. 1, sim_education_tab can be filled as follows:

INSERT INTO sim_education_tab VALUES (’A’, ’B’, 0.7);
INSERT INTO sim_education_tab VALUES (’CE’, ’CS’, 0.9);
INSERT INTO sim_education_tab VALUES (’CE’, ’EE’, 0.7);
INSERT INTO sim_education_tab VALUES (’CS’, ’EE’, 0.6);

In order to achieve flexibility, we should create a stored function sim_education
(its source code is not shown here) which given two education descriptions
returns their similarity degree, querying the sim_education_tab table. Using
functions implementing similarities on domains and using standard features of
SQL, one can implement queries corresponding to the operations of the relational
algebra for ranked tables over domains with similarities.

The similarity-based queries are intended to query ranked tables, i.e. the ar-
guments of similarity-based queries are, in principle, ranked tables. In a con-
ventional RDBMS, a ranked table over relation scheme Y can be represented
as a relation over relation scheme Y to which we add an attribute for ranks
(first column). However, from the users’ point of view, it is convenient to have
the option to apply similarity-based queries to ordinary relations (i.e., tables
without ranks) as well. Suppose that we have in our RDBMS a relation (called
candidates) depicted in Tab. 1 (without ranks) and want to see the candidates
with age similar to 30. This can be accomplished by SQL statement

SELECT sim_age(age, 30) AS sim_age_30, *
FROM candidates
ORDER BY sim_age_30 DESC;

The result is a relation with the first column representing ranks. In terms of
our relational algebra, this ranked table is a result of σage=30(D) where D is the
table from Tab. 1. In a similar way, using a function implementing fuzzy logical
conjunction, one can form SQL statements implementing queries like “select
candidates with age around 30 and education similar to electrical engineering”.
For instance, the standard �Lukasiewicz conjunction can be represented by the
following stored function:

CREATE FUNCTION luk_conj(degree1 NUMBER, degree2 NUMBER)
RETURN NUMBER IS

x NUMBER;
BEGIN
x := degree1 + degree2 - 1;
IF x < 0 THEN

x := 0;
END IF;
RETURN NUMBER(x);

END luk_conj;
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Using luk_conj together with sim_age and sim_education, we can formulate
the above-mentioned similarity-based query as follows:

SELECT luk_conj(sim_age(age, 30),
sim_education(education, ’EE’)) AS sim, *

FROM candidates
ORDER BY sim DESC;

Remark 3. Note that we have not discussed here a user-friendly syntax of an
extension of standard SQL which would enable the user to express similarity-
based queries in a comfortable form. Such an extension can be accomplished,
e.g., by devising a preprocessor which would translate statements of the SQL
extension to statements of ordinary SQL. Due to the limited scope, we do not
deal with this issue in the present paper. Our intention was to demonstrate that
the similarity-based queries can be implemented by means of the stored functions
for similarities and by means of the standard SQL.

3 Future Research

Main topics for future research are:

– development of relational algebra with focus on new (non-standard) opera-
tions and features;

– development of prototype implementation of the extended Codd’s model by
means of existing relational data base management systems;

– design of an extension of standard SQL for the extended Codd’s model and
its implementation (some proposals for “fuzzy SQL” can be found in the
literature but our relational model of data is different from the respective
models in the literature);

– development of standard issues from relational databases in our extended
setting (e.g., data dependencies, redundancy, normalization, and design of
databases, optimization issues, etc.).
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Abstract. Voting systems have a great impact on the results of contests
or elections. Simple methods are actually used, whereas they do not pro-
vide most accurate results. For example, in the Eurovision Song Contest,
the winner may not be the most preferred candidate. Condorcet crite-
rion, which consists in preserving most of the individual votes in the final
ranking, seems intuitively the most relevant. In this paper, we propose a
new ranking method founded on Condorcet voting count principle which
minimizes the number of pairwise inversions of the individual prefer-
ences. We propose a two-step method: computing the cycles among vote
preferences and removing a minimal set of pairwise preferences to erase
all the cycles and turn the votes into a partial order as close as possible
to a total order. Finally, we evaluate the impact of our ranking procedure
on the last 30 Eurovision Song Contests.

1 Introduction

Combining individual preferences into a collective preference is an important
problem with many real life applications where several agents have to take co-
operative decisions. It has been extensively studied in the social choice theory
field by philosophers that attempt to define most fare voting systems. Whereas
the goal of such systems is to ensure that at least half of the voters should get
the outcome they want, such a result is not guarantee by existing systems when
there are three or more candidates. On the other hand, the wide spread rela-
tive majority voting system in which the candidate who receives most of the
votes wins, is known to be outperformed by ranked voting systems, in which
voters rank candidates in order of preferences. Thus, many sport competitions,
but also the popular “Eurovision Song Contest”, use ranked voting methods. An
other use of these methods concerns metasearch engines that bring a renewed of
interest for these methods [1,6].

Borda count, the simplest ranked voting system, is the most widespread
method. Unfortunately, such voting procedure can lead to the election of a can-
didate which is not the one preferred by the majority of voters. On the other
hand, Condorcet methods aim at providing a ranking that preserves the majority
of opinions. It considers the relative majority between each pair of candidates
and elects the candidate who defeats any other ones in pairwise comparisons.
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c© Springer-Verlag Berlin Heidelberg 2007



A New Way to Aggregate Preferences 153

But such a winner may not exist if it exists majorities of preferences that are
not transitive. In the graph representation of the preferences, the intransitivity
among preferences is equivalent to the existence of cycles in the graph.

In this paper, we propose a new evaluation procedure. It eliminates cycles
among pairwise preferences to obtain a partial order such that the number of
eliminated votes is minimized. Computing the optimal partial order is feasible
by enumerating potential solutions in such a way that the objective function
increases. The current best solution is used to prune branches having a higher
objective function value. We also constrain our method to obtain a partial or-
der that is not too far from a total order. A measure based on the number of
comparable candidates is used to guarantee that the computed partial order is
almost a total order. We evaluate the impact of the ranking procedure on the
last 30 Eurovision Song Contests and compare the obtained rankings with the
official ones.

This paper is organized as follows. In section 2, we present the background
knowledge on ranking vote methods. In section 3, we formalize the problem of
aggregating preferences into an optimization problem and propose an algorithm
that computes an optimal solution. An evaluation of the proposed method is
given in section 4. Official rankings of the last Eurovision Song Contests are
compared by the ones obtained using the proposed method. Section 5 concludes.

2 Background

Ranking algorithms specify how to aggregate several rankings into a “consensus”
one. Voters order a set of candidates from most to least preferred and thus, a
more or less complicated algorithm is applied to aggregate them. Two opposite
approaches have mainly been used for more than two centuries: the voting count
theory of Borda and the one of Condorcet.

The Borda counting vote principle aggregates preferences by assigning a num-
ber of marks to each position in the rank. The candidates are ordered according
to the sum of the marks they were granted. Borda counting system is often de-
scribed as a consensus-based electoral system, rather than a majority-based one
because it can lead to the election of a candidate which is not the one preferred
by the majority of voters.

In the Condorcet approach, the vote counting consists in simulating all possible
duels between candidates: for each pair of candidates, the number of ballot papers
on which the first candidate is preferred to the second is counted. Thus the relative
majority between each couple of candidates is considered. For each duel, there is a
victorious candidate. If one candidate defeats all others in such duels, thus he/she
is elected winner. A particular point of interest is that the overall winner might
not be the first preference of any voter. In a sense, the Condorcet method yields
the ”best compromise” candidate, the one that the largest majority will find to be
least disagreeable, even if not their favorite.
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But such a winner does not exist if the majority preferences are not transitive.
Such a situation is called “paradox of Condorcet”: it is possible that a majority
prefers A to B, and also that another majority prefers B to C, and that a third
majority prefers C to A. Thus, it is impossible to rank candidates in a total
order only using the majority criterion. Condorcet gave indications on how to
break cycles that might occur. However, his prescription is not completely clear.
Young [8] shows that a correct application of Condorcet maximum likelihood
approach leads to an order that has the maximum pairwise support from the
voters. Montague et al.[4] propose to order candidates by partitioning candi-
dates into strongly connected components that correspond to different voting
cycles. The components are thus ordered using the Condorcet rule. Candidates
belonging to the same component are ranked arbitrarily.

The Kemeny method consists in reversing the preferences that do not satisfy
the majority criterion and that have the least combined plurality [7]. Such an
order involves the minimum number of pairwise inversions with the individual
rankings. Dwork et al. [1] show that finding a Kemeny optimal ranking is an
NP-hard problem when the number of voters is even and greater than 4. Zhu
et al. propose in [9] an heuristic to approximate the solution of this problem by
iteratively incrementing or decrementing the position in the consensus order of
the candidate i who has the largest difference between the sum of votes that
support i against another candidate and the sum of votes that support others
candidates against i.

3 Problem Setting and Contribution

Here, we give our formal model of voting. Given a set of n candidates C =
{C1, · · · , Cn} and a set of m voters V = {V1, · · · , Vm}, the ranking <Vi of the
voter Vi with respect to C is a partial order on the elements of C (see Definition 1)
and thus can be represented by a directed acyclic graph. <Vi represents the
preferences of the voter Vi, that is to say C1 ≤i C2 means that voter Vi prefers
C2 to C1. In the Eurovision Song Contest, each judge gives its top-10 candidates.
This ranking is a total order on these 10 candidates. The other candidates have a
lower rank and are incomparable to each others. Thus, each voter gives a partial
order on C. As in the Condorcet approach, we consider each partial order <Vi

as a set of pairwise comparisons.
We have a collection of m rankings {<V1 , · · · , <Vm} which are respectively

provided by the element of V . We represent the m rankings by a weighted
directed graph Gm = (C,A, ω) where the set of vertices C is the set of candidates,
the set of arcs A is defined by

A = {(Ci, Cj) | Ci, Cj ∈ C and ∃Vk ∈ V such that Ci <Vk
Cj}

and ω is the weight function from A to N which associates to each arc (Ci, Cj)
the number of voters that prefer Cj to Ci:

ω(Ci, Cj) = |{k ∈ V | Ci <Vk
Cj}|
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Definition 1. A strict order < on a set C is a transitive, irreflexive and anti-
symmetric relation. Such an order can be total, if for each pair of elements
(X, Y ) ∈ C2, either we have X < Y or Y < X. Otherwise, the order is said
to be partial. Two candidates X and Y are said to be incomparable if neither
X < Y nor Y < X. A partial order can be represented by a DAG (Directed
Acyclic Graph) where each vertex represents an element of C and an arc from X
to Y exists if X < Y . If the order is total, the graph is a chain.

A voting algorithm consists in aggregating the m rankings into a ”consensus”
ranking GO. GO is thus a DAG on C. Computing GO in a Condorcet manner
requires the elimination of cycles of Gm. As a consequence some voters’ pairwise
preferences are not taken into account in GO. The most relevant consensus order
has to minimize the number of eliminated votes. However, taking only this crite-
rion might lead to a partial order that contains too few comparable candidates.
In that case, one could prefer to obtain a worse order in the sense of the number
of eliminated votes, but with more comparable candidates.

To summarize, we want to compute an order GO which optimizes the two
following criteria:

1. minimizing the number of votes of Gm in conflict with GO

2. maximizing the number of comparable candidates in GO

If we consider the whole graph Gm that contains all the pairwise comparisons
given by the voters, we may not have an order, i.e. the resulting relation may not
be anti-symmetric and Gm might contain cycles. An intuitive algorithm could
be to remove a minimal number of pairwise comparisons among those given by
the voters to turn the relation into a partial order. In that way, we obtain a
partial order on candidates, and by minimizing the number of removed pair-
wise comparisons, most of the candidates are still comparable to each others.
Let us define more formally the used criteria. Given a graph G, D1(G) evalu-
ates how the candidates are comparable to each others. Here we only consider
the structure of the graph G and not its associated weights. D1 is defined as
follows:

D1(G = (C,A, ω)) =
∑n

k=0 |{Ci ∈ C | (Ci, Ck) ∈ A or (Ck, Ci) ∈ A}|
(2n)

D1 computes the number of couples of candidates that are comparable. D1 is
equal to 1 when all the candidates are comparable.

We use another metric D2(G) to evaluate how many pairwise comparisons of
Gm are not included into G. We have:

D2(G = (C,A, ω)) =
n∑

k=0

|{(Ci, Cj) ∈ C2 | Ci <Vk
Cj and (Ci, Cj) 
∈ A}|
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Let us consider the following specialization relation ⊆ on graphs:

Definition 2 (Specialization relation). Let G1 =(C, A1, ω) and G2 =(C, A2, ω)
be two graphs that differ by their set of arcs.

G2 ⊆ G1 ⇔ ((X, Y ) ∈ A2 ⇒ (X, Y ) ∈ A1)

The ideal consensus graph GO ⊆ Gm is a graph that maximizes D1 and mini-
mizes D2. As these two criteria are in a way contradictory, we are looking for a
graph with a high value for D1(GO) and a small value for D2(GO). Formally, the
problem is set as follows. Given Gm and a numerical threshold α, the problem
consists in computing the graph GO ⊆ Gm such that:

GO is a DAG
D1(GO) ≥ α

minimizing D2(GO)

The first condition implies that there is no cycle in the graph GO. The second
one ensures that at least α% of the candidates are comparable to each others.
Finally, among the graphs that satisfy these two constraints, G0 is one of the
graphs that minimizes the number of deleted votes.

This combinatorial problem requires to optimize a function under contraints.
Resolving such a problem necessitates to explor the search space of graphs G ⊆
Gm to find the solution. In a data mining framework, we can take advantages
from using an appropriate enumeration process that transforms the constraints
and the objective function into monotonic functions that can be actively used to
prune the search space. Let us first recall the monotonic constraint definition:

Definition 3. (Monotonicity) A constraint C is said anti-monotonic w.r.t. ⊆
iff ∀G1, G2 two graphs such that G1 ⊆ G2, C(G2) ⇒ C(G1). C is said mono-

tonic w.r.t. ⊆ iff ∀G1, G2 such that G1 ⊆ G2, C(G1) ⇒ C(G2).

One can adopt one of these two strategies to explore the search space of graphs
G ⊆ Gm:

– starting with an empty graph and adding recursively arcs from Gm

– or, starting from Gm and removing arcs

The second enumeration process has the advantage that functions D1 and D2

turn to be monotonic. The monotonicity of D1 and D2 implies that if it exists
a graph G2 such that D1(G2) < α then, ∀G1 ⊆ G2, D1(G1) < α. Similarly, if
G2 does not minimize D2, then ∀G1 ⊆ G2, G1 does not minimize D2 as well.
Such conditions can be used to prune the search space. Consequently, due to
these properties, our algorithm is based on the second enumeration. The only
one constraint which is not automatically satisfied by the enumeration is the
DAG constraint which is not monotonic. This constraint is thus ensured by
construction: at least one arc by cycle is removed.

Our algorithm proceeds in two phases: it computes all the cycles of Gm and
then generates potentially all, the partial orders by removing from Gm at least
one arc of each cycle.
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Fig. 1. Graph representation of three voters’ rankings that order three candidats among
five

We propose a Branch-and-Bound algorithm (see Table 1) to find the partial
order GO derived from Gm having the lowest D2(GO) such that D1(GO) > α. It
is a depth-first search algorithm. Let D be the set of cycles of G and A the set
of arcs belonging to at least one cycle of D. We enumerate all the sub-graphs of
Gm such that 1) D2(G) is lower than the already extracted partial orders and
2) D1(G) is greater than α.

We select an arc ei ∈ A and we compute D′ by removing from D the cycles
which contain ei. ei is only considered if it enables the deletion of cycles from D.
Then we call recursively the function cut() with A\{ei} and D′ as parameters
to compute all the maximal partial orders containing ei. We also call recursively
cut() with A \ {ei} and D to compute all the maximal partial orders which do
not contain ei. The enumeration process is stopped when D is empty. A relevant
partial order is thus obtained and stored. Before splitting the search space into
two new ones we compute the metric D1 and D2 on the current candidate. If
D1(G) > α and D2(G) is lower than the best solution already computed, then
the enumeration process keep going, otherwise it is not split.

Figure 1 represents a ranking problem example on which we explain in the
following how the proposed algorithm computes a consensus order. Three voters
have ranked three candidates among five denoted by A, B, C, D andE. The first
voter chooses the order A ≥1 B ≥1 C, the second one A ≥2 C ≥2 B and the last
one B ≥3 A ≥3 D. The graph representing the three voters’ rankings is shown
on the top of Figure 1. The graph Gm, obtained by merging the previous graphs,
is reported on the bottom of Figure 1.

Figure 2 represents the main steps of the proposed algorithm when it is applied
on the votes of Figure 1. First it computes all the cycles of Gm. On these data,
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Table 1. Pseudo-code of the proposed algorithm

Gm = (C, E, ω) the voting graph, D a set of cycles, A
a set of arcs, R the set of removed arcs and Min the
lowest D1 of the already extracted partial orders.
Algo()

D ← Cycles(G)
A ← {(X, Y ) ∈ D}
Min ← +∞
Cut(D, A, ∅)

End Algo
Cut(D, A, R)

if(D1(G = (C, E\R, ω)) > α and D2(G = (C, E\
R, ω)) < Min)

if(D �= ∅)
Let ei ∈ A
D′ ← {c ∈ D | ei �∈ c}

Cut(D′, A \ {ei}, R ∪ {ei})
Cut(D, A \ {ei}, R)

Else
Store G = (C, E \ R, ω)
Min ← D2(G = (C, E \ R, ω))

End if
End if

End Cut

six cycles have been obtained (see Figure 2 left). The right part of the figure
presents the enumeration tree. At this step, |D| = 6 and Min = +∞. An arc
among those having the lowest weight is chosen. Here it is B → C which has
a weight of 1. B → C appears in four among the six cycles, consequently at
most two additional recursive calls are needed to explore this branch in a depth
first search approach. The second recursive call leads to the choice of A → B,
and the last cycle is broken by removing the arc C → D. In the next recursive
call, D is empty and thus the current solution is stored and the variable Min
is updated by the sum of the weights of the three removed arcs. Returning to
the previous call of the function cut(), another arc is chosen. So, instead of
C → D, the arc D → C is chosen. This choice leads to a graph having a value of
four on D2 and thus the exploration of this branch is stopped. An optimization
procedure, which is not depict in the algorithm of Table 1, is applied here to
stop the enumeration process. As none of the arcs of the third cycle can produce
an acceptable solution, it is not necessary to keep going the enumeration of this
branch. Then the algorithm backtrack and instead of A → B, it enumerates
B → A. Once again the enumeration is stopped because the current solution
has a value equal to Min. Other branches of the enumeration tree are shown on
Figure 2. Finally, the first extracted order is one of the optimal solutions.
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Fig. 2. Application of the proposed algorithm on the votes of Figure 1

4 Experimentation

Eurovision Song Contest data gather participating countries votes to countries’
singers during 49 years (between 1957 and 2005). During these years, 43 countries
took place in this competition. The voting system used has changed through-
out the years and the modern one was set up in 1975. It is an adaptation of
the Borda counting vote principle where each voter ranks candidates in order
of preferences. The score of a candidate is determined by summing the points
corresponding to his/her position in each voter rank. In the Eurovision Song
Contest, country judges dispatch a set of marks from 1 to 8, then 10 and finally
12 among competing singers but cannot vote for their compatriot singer. The
singer with the best score is the winner of the contest.

The Eurovision Song Contest has been subject to criticisms: judges would vote
preferentially for countries independently of the singers’ performances. Some
analysis of voting patterns [2,3] attest this fact. Figure 3 is an illustration of this
point. It represents the distribution of the highest mark (12) given by a country
(in abscissa) to the country singers (in stacks). We can see that the distribution
of some countries are very biased toward one or a couple of preferential countries.
For example, Slovenia gave 60% of its highest mark to Croatia, as Cyprus did
for Greece. Estonia gave its highest mark to Sweden in 40% of the contests.
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Fig. 3. Number of time that a country (abscissa) gave its highest score to another
country (inside the stacks)

We want to test if our ranking method is relevant to determine Eurovision
Song Contest winners. For each year between 1975 and 2005 we compute the
voting graph that gathers countries’ vote preferences. We remove arcs that are
not supported by a lot of countries. We fix α to 30%. Due to the lack of space
we only report results for year 1975 and 1989.

Figure 4 shows the ranking obtained by the proposed method (black arrows)
for the contest held in 1976. The official ranking is also represented with gray
arrows which are dotted if they do not belong to the previous order. The pro-
posed method provides a partial order. The top-50% singers are totally ordered,
whereas in the ranking tail they are mostly incomparable. As we can see, this
computed ranking is very similar to the official one, but the official winner, the
United-Kingdom, would be ranked second, behind France1, by our method.

To assess the quality of the method, we compare the two rankings with an ex-
ternal criterion based on frequent sub-orders. A good ranking should aggregates
most of votes’ preferences. To make a fair comparison with the Borda method
used in the official ranking, we do not used the number of pairwise comparisons
conserved by each ranking, because it is the criterion optimized by our method.
We choose to compare rankings with respect to the number of sub-orders of
length at least 3 that are frequently supported by voters. We use a local pattern
extraction method [5] to compute these frequent sub-orders of votes. We extract
all sub-orders of length at least 3 supported by at least 4 voters. We obtained
107 sub-orders. 60% of them respect the official ranking whereas 70% of them
are consisting with the ranking computed with our method. Thus our ranking
method is more coherent with the frequent sub-orders than the official one.
1 This result is totally independent from the nationality of the authors.
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Figure 5 presents the obtained ranking for the contest held in 1989. As previ-
ously, the top countries are totally ordered in a way similar to the official ranking.
There are much more incomparable countries. While computing frequent
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sub-orders (of length at least 3 and a frequency greater than 4), we obtained only
15 patterns. This indicates the lack of consensus among voters. Only 30% of them
are in the same order than the official ranking, whereas our method conserves 50%
of them. When computing the same pattern with a frequency greater than 3, we
obtained 91 sub-orders and 50% of them are compatible with the official ranking
whereas 60% are sub-orders of the ranking produced by our method.

5 Conclusion

We have introduced a new method to aggregate vote preferences. It preserves
most of pairwise preferences embedded in the ranking votes, eliminating only
those introducing intransitivity. A parameter is used during computation to
make the partial order converge towards a total order. Thus, we have a trade-off
between the quality of the computed order and its adequacy with the initial
votes. The algorithm minimizes a function which increases during the enumera-
tion. Thus the extraction of the optimal solution is tractable on the Eurovision
Song Contest data. The enumeration is aborted when the current solution has a
greater value than the current best one. The first results show that the method
computes coherent order with the Borda method used in the official ranking.
We have shown that the proposed method preserves more frequent sub-orders of
the vote rankings and thus better synthesizes votes. We plan to make additional
experimentation and especially to further study the impact of parameter α.
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Abstract. The framework of this paper is supervised learning using
classification trees. Two types of variables play a role in the definition of
the classification rule, namely a response variable and a set of predictors.
The tree classifier is built up by a recursive partitioning of the prediction
space such to provide internally homogeneous groups of objects with re-
spect to the response classes. In the following, we consider the role played
by an instrumental variable to stratify either the variables or the objects.
This yields to introduce a tree-based methodology for conditional classifi-
cation. Two special cases will be discussed to grow multiple discriminant
trees and partial predictability trees. These approaches use discriminant
analysis and predictability measures respectively. Empirical evidence of
their usefulness will be shown in real case studies.

1 Introduction

1.1 Nowdays Data Analysis

Understanding complex data structures in large databases is the new challenge
for statisticians working in a variety of fields such as biology, finance, marketing,
public governance, chemistry and so on. Complexity often refers to both the
high dimensionality of units and/or variables and the specific constraints among
the variables. One approach is Data Mining [6], namely the science of extracting
useful information from large data sets by means of a strategy of analysis consid-
ering data preprocessing and statistical methods. Another approach is Machine
Learning that combines data-driven procedures with computational intensive
methods by exploiting the information technology such to obtain a comprehen-
sive and detailed explanation of the phenomenon under analysis. Turning data
into information and then information into knowledge are the main steps of the
knowledge discovery process of statistical learning [7] as well as of intelligent data
analysis [5]. Key questions in the choice of the best strategy of analysis refer to
the type of output (i.e., regression or classification), the type of variables (i.e.,
numerical and/or categorical), the role played by the variables (i.e., dependent
or explanatory), the type of statistical units (i.e., observational or longitudinal
data), the type of modelling (i.e., parametric or nonparametric).
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1.2 Binary Segmentation

In this framework, segmentation methods have proved to be a powerful and
effective nonparametric tool for high-dimensional data analysis. A tree-based
partitioning algorithm of the predictor space allows to identify homogeneous
sub-populations of statistical units with respect to a response variable. A tree
path describe the dependence relationship among the variables explaining the
posterior classification/prediction of units. Any induction procedure allows to
classify/predict new cases of unknown response [13]. In this paper, we refer to
CART methodology for classification trees [2] and some advancements provided
by two-stage segmentation [8] and the fast algorithm [9]. At each node of the
tree, a binary split of sample units is selected such to maximize the decrease of
impurity of the response variables when passing from the top node to the two
children nodes. This objective function can be shown to be equivalent to maxi-
mizing the predictability measure of the splitting variable to explain the response
variable. Typically, candidate splits are all possible dichotomous variables that
can be generated by all predictor variables, but the fast algorithm allows to find
the optimal solution of CART without trying out all possible splits.

1.3 This Paper Genesis

As a matter of fact, when dealing with complex relations among the variables,
any CART-based approach offers unstable and not interpretable solutions. An
alternative in case of within-groups correlated inputs (of numerical type) is two-
stage discriminant trees, where splitting variables are linear combinations of each
group of inputs derived by the discriminant factorial analysis [10].

This paper aims to define a segmentation methodology for three-way data
matrix starting from some recent results [15]. A three-way data matrix consists
of measurements of a response variable, a set of predictors, and in addition
a stratifying or descriptor variable (of categorical type). The latter play the
role of conditional variable for either the predictor variables or the objects (or
statistical units). Two basic methods will be discussed in details providing some
justification for the concept of supervised conditional classification in tree-based
methodology. Our proposed segmentation methods for complex data structures
are all introduced in the Tree-Harvest Software [1] [14] using MATLAB.

2 Multiple Discriminant Trees

2.1 Notation and Definition

Let Y be the output, namely the response variable, and let X = {X1, . . . , XM}
be the set of M inputs, namely the predictor variables. In addition, let ZP be
the stratifying predictor variable with G categories. The response variable is a
nominal variable with J classes and the M predictors are covariates, thus of
numerical type. The input variables are stratified into G groups, on the basis
of the instrumental variable ZP . The g-th block of input variables includes mg

input variables Xg = (gX1, . . . , gXmg ) for g = 1, . . . , G.
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2.2 The Multiple Method

The proposed method aims to replace blocks of covariates by their linear com-
binations applying the factorial linear discriminant analysis. In particular, the
discriminant analysis is applied twice, first to summarize each block of input
variables (within-block latent compromise) and then to find a compromise of
all blocks (across-blocks latent compromise). In the first stage, the attention is
shifted from the G sets of original covariates to G latent variables, obtained
searching for those linear combinations of each block of original variables which
summarize the relationships among the covariates with respect to a grouping
variable. In our approach, the role of grouping variable is played by the response
variable. In the second stage, the algorithm runs to the creation of one global
latent variable, synthesis of the previous discriminant functions obtained in the
first step. On the basis of such compromise the best split will be found.

2.3 Within-Block Latent Compromises

The process is to divide up a mg dimensional space into pieces such that the
groups (identified by the response variable) are as distinct as possible. Let Bg

be the between group deviation matrix of the inputs in the g-th block and
Wg the (common) within group deviation matrix. The aim is to find the linear
combination of the covariates:

φg =
mg∑

m=1

gαm · gXmg (1)

where gαm are the values of the eigenvector associated to the largest eigenvalue
of the matrix Wg

−1Bg. The (1) is the g-th linear combination of the inputs
belonging to the g-th block with weights given by the first eigenvector values. It
is obtained maximizing the predictability power of the mg inputs to make the
J classes as distinct as possible. Moreover, the φg variables are all normalized
such to have mean equal to zero and variance equal to one.

2.4 Across-Block Latent Compromise

As second step, we find a compromise of the G blocks applying the linear dis-
criminant analysis once again, thus obtaining:

ψ =
G∑

g=1

βgφg (2)

where βg are the values of the eigenvector associated to the the largest eigenvalue
of the matrix W−1B. These matrices refer to the between group deviation matrix
of the discriminant functions φg for g = 1, . . . , G.
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2.5 Multiple Factorial Split

Finally, the best split will be selected among all possible dichotomizations of the
ψ variable maximizing the decrease of impurity function. As a result, a multiple
discriminant split is found where all covariates play a role that can be evaluated
considering both the set of coefficients of the linear combination of the blocks
and the set of coefficients of the linear combination of the covariates belonging
to each block.

2.6 The Computational Steps

The three-steps procedure can be justified with a two-fold consideration: on one
hand, a unique global latent and discriminant variable (i.e., the linear combina-
tion of within-block latent variables) allows to generate binary splits for that all
predictors have contributed; on the other hand, taking into account the within-
block latent variables, it is possible to calculate a set of coefficients that represent
each the weight of the link among those, the predictors, the response variable
and the global latent variable. In other words, if the conditions for the applica-
tion are verified, the addition of a third stage allows a better interpretation for
the explanation of the phenomenon, because all the variables act simultaneously
at the same time the split is created, but it is possible to interpret the valence
of each of those towards both response and dimensional latent variables.

3 Partial Predictability Trees

3.1 Notation and Definition

Let Y be the output, namely the response variable, and let X = {X1, . . . , XM}
be the set of M inputs, namely the predictor variables. In addition, let ZO be the
stratifying object variable with K categories. The response variable is a nominal
variable with J classes and the M predictors are all categorical variables (or
categorized numerical variables). The sample is stratified according to the K
categories of the instrumental variable ZO.

3.2 The Partial Method

We consider the two-stage splitting criterion [8] based on the predictability τ
index of Goodman and Kruskal [3] for two-way cross-classifications: in the first
stage, the best predictor is found maximizing the global prediction with respect
to the response variable; in the second stage, the best split of the best predictor
is found maximizing the local prediction. It can be demonstrated that skipping
the first stage maximizing the simple τ index is equivalent to maximizing the de-
crease of impurity in CART approach. In the following, we extend this criterion
in order to consider the predictability power explained by each predictor/split
with respect to the response variable conditioned by the instrumental variable
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ZO. For that, we consider the predictability indexes used for three-way cross-
classifications, namely the multiple τm and the partial τp predictability index
of Gray and Williams [4], that are extensions of the Goodman and Kruskal τs

index.

3.3 The Splitting Criterion

At each node, in the first stage, among all available predictors Xm for m =
1, . . . , M , we maximize the partial index τp(Y |Xm, ZO) to find the best predictor
X∗ conditioned by the instrumental variable ZO:

τp(Y |Xm, ZO) =
τm(Y |XmZO)− τs(Y |ZO)

1− τs(Y |ZO)
(3)

where τm(Y |XmZO) and τs(Y |ZO) are the multiple and the simple predictability
measures. In the second stage, we find the best split s∗ of the best predictor X∗

maximizing the partial index τs(Y |s, ZO) among all possible splits of the best
predictor. It can be possible to apply a CATANOVA testing procedure using the
predictability indexes calculated on an indipendent test sample as stopping rule
[12].

4 Applications

4.1 Partial Predictability Trees: German Credit Survey

There are several fields in which this methodology can be applied with good
results. In this section, we present an application about credit leave in Germany.
The data regard a survey collected by Professor Dr. Hans Hofmann, University
of Hamburg, with N = 2026 [11]. Table 1 describes the predictors of German
credit dataset. The response variable is a dummy variable, namely the good and
the bad client of the bank.

Table 1. Predictors in the German Credit Dataset
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Fig. 1. Partial Predictability Tree Graph (German Credit Survey)

A proper classification rule should consider the different typologies of bank
customer. This can be considered as the instrumental ZO having four strata
ordered on the basis of the credit amount requested. Figure 1 shows the final
binary tree with 26 terminal nodes, where nodes are numbered using the property
that the node t generates the left subnode 2t and the right subnode 2t + 1; we
denote the predictor used for the split at each nonterminal node and by distinct
color the response class distribution within each terminal node. The branch
hold by node 2 is described in details in Figure 2. It is interesting to point out
some useful information by interpreting this type of output results. Each node
is divided in four parts (one for every category of the instrumental variable)
and close to the terminal nodes the percentage of good classified within each
group is indicated. In addition, the predictor used for the splits of all strata of
cases is also indicated. It can be noticed that the split at the node 2 is based
on the credit purpose: in the left subnode (i.e., the node 4) there are relatively
more good clients than bad clients as soon as the credit amount increases, their
credit is for new car, education and business; in the right subnode (i.e., the node
5) there are relatively more bad clients and the good clients are identified in
the further split on the basis of a duration of the credit lower than 12 months.
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Fig. 2. An example of data interpretation: branch of node 2 (German Credit Survey)

Finally, clients employed by less than 1 year ican be considered as a bad client
as soon as the credit amount increases. As further examples of output, Table
2 provides summary information concerning the path yielding to the terminal
node 23 which label is good client, whereas Table 3 concerns the path yielding
to the terminal node 54 which label is bad client. In particular, in each table we
report the response classes distribution of the objects within the four strata of
ZO, for the predictor selected in each nonterminal node. In addition, we give the
Catanova test significance value.

As an example, we can see in Table 2 that the original scenario shows a bigger
presence of bad clients than good clients in all four strata. After the first split,
the situation changes in the first three strata, instead in the fourth there are
more bad clients than good. Only after four splits in all strata there is a bigger
presence of good clients although there are clear differences within each stratum.

4.2 Multiple Discriminant Trees: Local Transport Survey

Multiple discriminant tree method has been fruitfully applied for a Customer
Satisfaction Analysis. On 2006, a survey of N = 1290 customers of a local public
transport company in Naples has been collected measuring the level of global
satisfaction and the level of satisfaction with respect to four dimensions of the
service, each considering three aspects.
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Table 2. Path 1 − 23: Terminal label - Good client - (German Credit Survey)

Response Classes Distribution z1 z2 z3 z4

Node n Predictor G B G B G B G B C sign.
1 2026 Account Status 205 415 171 295 199 375 91 275 0,0000

2 546 Purpose 103 35 94 60 93 65 46 50 0,0000

5 332 Duration 50 20 50 55 42 55 20 40 0,0000

11 211 Present employm. since 14 0 26 35 29 50 17 40 0,0000

23 64 Terminal Node 8 0 14 5 10 10 12 5 0,0080

Table 3. Path 1 − 54: Terminal label - Bad client - (German Credit Survey)

Response Classes Distribution z1 z2 z3 z4

Node n Predictor G B G B G B G B C sign.
1 2026 Account Status 205 415 171 295 199 375 91 275 0,0000

3 1480 Duration 102 380 77 235 106 310 45 225 0,0031

6 720 Purpose 95 295 56 95 44 85 10 40 0,0004

13 698 Purpose 89 290 50 95 39 85 10 40 0,0027

27 491 Credit History 50 220 28 65 28 70 10 20 0,0028

54 71 Terminal Node 0 40 0 15 1 10 0 5 0,0195

Table 4. Path 1-8: Terminal label - Unsatisfied customers of Local Transport System

Node n score DIM 1 2 3 4

node 1 1290 145.42 BETA 0.59 0.41 0.45 0.34

ALPHA 10.53 10.50 5.68 9.70

5.45 4.80 6.01 6.06

8.80 6.93 10.35 7.30

node 2 473 106.07 BETA 1.15 1.01 1.02 0.94

ALPHA 2.69 1.92 2.00 2.35

0.41 2.31 1.47 1.31

2.38 3.40 2.23 2.83

node 4 129 68.27 BETA 1.13 1.25 0.98 1.17

ALPHA 1.73 2.07 0.53 1.00

0.85 0.31 0.74 1.80

2.50 2.09 2.97 0.46

node 8 51 terminal node

The response variable has two classes distinguishing the satisfied and the
unsatisfied customers. The strata of the instrumental variable ZP are service’s
reliability, informations, additional services and travel’s comfort, each is charac-
terized by three ordinal predictors, where a Thurstone data transformation has
allowed to treat them as numerical ones. Figure 3 describes the role played by the
variables in discriminating between satisfied and unsatisfied customers. Table 4
provides summary information concerning the path yielding to a terminal node
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Fig. 3. Discriminant Satisfaction Schema (Local Transport System Survey)

Table 5. Path 1-55: Terminal label - Satisfied customers of Local Transport System

Node n score DIM 1 2 3 4

node 1 1290 145.42 BETA 0.59 0.41 0.45 0.34

ALPHA 10.53 10.50 5.68 9.70

5.45 4.80 6.01 6.06

8.80 6.93 10.35 7.30

node 3 817 117.71 BETA 0.67 0.24 0.43 0.37

ALPHA 7.54 7.23 6.68 8.27

6.85 4.27 3.52 6.07

7.87 5.75 7.61 5.87

node 6 300 92.44 BETA 1.01 0.80 0.89 0.87

ALPHA 1.19 1.29 1.72 2.56

2.82 2.25 1.74 1.59

4.51 0.81 1.66 3.18

node 13 210 46.74 BETA 0.72 0.04 0.36 0.28

ALPHA 4.32 3.25 5.71 3.81

3.59 1.51 0.00 3.31

3.54 2.24 3.72 2.96

node 27 122 34.43 BETA 0.77 0.14 0.29 0.28

ALPHA 2.52 1.36 4.31 2.67

3.01 2.03 0.27 3.17

3.21 1.52 2.51 1.64

node 55 51 terminal node
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which label is satisfied customer, whereas Table 5 concerns the path yielding to
a terminal node which label is unsatisfied customer. Table 4 describes for each
node the number of individuals, the split-score, the BETA coefficients of each
dimension and the ALPHA coefficients within each dimension. From the Table
4 it is clear the high strength of dimension 1 in the split of node 1 and of node
2 as the BETA coefficient is relatively bigger for dimension 1 with respect to
the others. Only in the split of node 4 of this path another dimension has the
highest coefficient. In the Table 5 for every split the highest BETA coefficient
is always in the dimension 1. It is evident that the satisfied customers are well
discriminated considering just the dimension relative to reliability; instead for
the unsatisfied customers are important all the dimensions of the service.

5 Concluding Remarks

This paper has provided conditional classification trees using an instrumental
variable. Two cases have been discussed. In the first, the response variable is
a dummy variable, the predictors are numerical and the instrumental variable
provides to distinguish them into a set of different blocks. Standard tree-based
models would find at each node a split based on just one predictor regardless
the multi-block structure of the predictors that can be internally correlated. We
have introduced a method to grow multiple discriminant trees where the dis-
criminant analysis is used to summarize the information within each block and
a multiple splitting criterion has been defined accordingly. At each node of the
tree, we are able to assign a coefficient of importance to each predictor within
each block as well as to each block in the most suitable discrimination between
the two response classes. A Customer Satisfaction Analysis based on a real data
set has been briefly presented in order to show some issues in the interpreta-
tion of the results. The second case deals with all categorical variables and the
instrumental variable provides to distinguish different subsamples of objects. A
standard splitting criterion would divide the objects regardless their subsam-
ples belonging. We have introduced a splitting criterion that finds the best split
conditioned by the instrumental variable. This yields to grow partial predictabil-
ity trees that can be understood as an extension of two-stage segmentation and
to some extent of CART approach. An application on a well-known real data
set has been briefly described in order to point out how the procedure gives,
at each node, the set of response class distributions, one for each sub-sample.
The results of several applications have been very promising for both methods,
showing that our methodology works much better than CART standard proce-
dure to explain the interior structure of tree models. Both the two procedures
have been implemented in MATLAB environment enriching the Tree Harvest
Software we are developing as an alternative to standard tree-based methods for
special structures of data.
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Abstract. Data Fusion and Data Grafting are concerned with combin-
ing files and information coming from different sources. The problem is
not to extract data from a single database, but to merge information
collected from different sample surveys. The typical data fusion situa-
tion formed of two data samples, the former made up of a complete data
matrix X relative to a first survey, and the latter Y which contains a cer-
tain number of missing variables. The aim is to complete the matrix Y
beginning from the knowledge acquired from the X. Thus, the goal is the
definition of the correlation structure which joins the two data matrices
to be merged. In this paper, we provide an innovative methodology for
Data Fusion based on an incremental imputation algorithm in tree-based
models. In addition, we consider robust tree validation by boosting itera-
tions. A relevant advantage of the proposed method is that it works for a
mixed data structure including both numerical and categorical variables.
As benchmarking methods we consider explicit methods such as standard
trees and multiple regression as well as an implicit method based princi-
pal component analysis. A widely extended simulation study proves that
the proposed method is more accurate than the other methods.

1 Introduction

Data Fusion and Data Grafting are concerned with combining files and infor-
mation coming from different sources [12]. The problem is not to extract data
from a single database, but to merge information collected from different sample
surveys. The term fusion is used in this sense. The typical data fusion situation
formed of two data samples, the former made up of a complete data matrix
X relative to a first survey, and the latter Y which contains a certain number
of missing variables. The aim is to complete the matrix Y beginning from the
knowledge acquired from the X. As a consequence, the Data Fusion can be con-
sidered as a particular case of data imputation framework, with the difference
that in this case a group of instances is missing as they have not been observed.
In literature, several approaches have been introduced dealing with Data Fusion:

– the classical approach such as regression models, general linear models
and logistic regression [10];

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 174–183, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Robust Tree-Based Incremental Imputation Method for Data Fusion 175

– the implicit approach based on the concept of similarity among the ob-
servations deriving from different sources [1];

– the non parametric approach that uses non standard regression tech-
niques to impute missing values [4].

In the following, an innovative methodology for Data Fusion, based on a incre-
mental imputation algorithm using tree-based models, is proposed.

The goal of this approach is the definition of the correlation structure which
joins the two data matrices that are object of the fusion. A recursive use of robust
segmentation trees validated by boosting iterations [7] will be considered. In this
way, we define a tree-based incremental data fusion algorithm which proceeds,
step by step, to the completion of the missing instances. This methodology allows
to overcome the situation characterized by the presence of heterogeneous kinds
of unobserved variables. As a matter of fact, the tree-based models give the
possibility to work, at the same time, with both qualitative and quantitative
data. The proposed algorithm has been implemented in MATLAB environment,
as an additional module of Tree Harvest Software [3] [15]. Several analysis on
simulated and real datasets show how this techniques can offer interesting results
especially in comparison with the most famous classical and implicit approaches.

2 The Framework

Data Fusion problem may be formalized in term of two data files [1]. The first
data file consists of a whole set of p + q variables measured on n0 subjects.
This data file is called donor file. The second data file, usually named receptor
file, consists in a subset of p variables measured on n1 units (figure 1). So, the
problem is to merge two different and independent databases.

We could imagine two independent surveys named survey A and survey B. Say
that survey A has been collected in a particular supermarket, and say that survey

Fig. 1. Data Fusion mechanism
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B has been collected in a different supermarket of the same chain located. The
first set of variables X and X1 are common to both supermarkets, whereas the
other set Y is specific of Survey A. How would customer from second supermarket
answers if we asked the same questions?

In the framework of Data Fusion we distinguish between explicit models and
implicit models [12]. Explicit models are known as models based on variables,
such as multiple regression, logistic regression, tree-based models, etc. With ex-
plicit models, a model is used to connect Y variables with the X variables in
the donor file and then applying this model in the receptor file. Implicit mod-
els are models based on individuals (hot-deck imputation, k-nearest neighbours
imputation, etc.), because for each individual belonging to the receptor file the
k-nearest neighbours units of donor matrix are identified to transfer in some way
the values of the Y variables to the receptor observation.

3 The Imputation Methodology

Our work follows the Incremental Non Parametric Imputation philosophy [13]
[14]. Main idea of this explicit approach is to rearrange columns and rows of the
data matrix according to a lexicographic ordering of the data (with respect to
both rows and columns), that matches the order by value, corresponding to the
number of missing data occurring in each record.

Main issue of the incremental approach is that following the positions defined
by the index k , each column presenting missing values, at each turn, plays the
role of dependent variable to be imputed by the complete set of variables with
no missing values. Once that this variable is imputed it concurs to form the
complete set of predictors used for the subsequent imputation.

Any missing column is handled using the tree-based model fitted to the cur-
rent data which is iteratively updated by the imputed data. The imputation is
incremental because, as it goes on, more and more information is added to the
data matrix.

As a result, ensemble trees, by a boosting procedure, are used to impute data
and the algorithm performs an incremental imputation of each single instance at
time. Ensemble methods such as Boosting [7] allows to define a robust imputation
procedure.

In the figure (2) the main steps of the imputation algorithm are described.
Let Y be a N ×K matrix bearing missing data where yk is the k−th variable

of Y .
In the first step, the column k∗ with the smallest number of missing data

is found. This one plays the role of dependent variable. In the second step the
columns with no missing values are sorted to obtain a complete matrix of p
variables playing the role of predictors. In the following steps (i.e. the third and
the fourth), the data are rearranged and a robust tree procedure is applied to
estimate the missing values of the yk∗ . The algorithm iterates until all missing
data are imputed.
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Fig. 2. Boosted Incremental Non Parametric Imputation Algorithm

4 Robust Incremental Imputation Algorithm for Data
Fusion

The incremental approach, showed in the previous section, is integrated in a
recursive methodology for data fusion that we call Robust Incremental Im-
putation (RTII).

Figure (3) describes the main steps of the proposed imputation algorithm for
Data Fusion.

Let the donor file be formed by A and B blocks, let the receptor file be made
by the C block, and let D be the block to impute.

Common variables x1, ..., xp are represented by A and C blocks, whereas B
block symbolizes specific variables y1, ..., yq.

4.1 The Main Step of RTII Algorithm

– Step 0.
• Sort B block according to the dependence link with block A. Build a

supervised tree for each y columns, then sort columns according to the
previously obtained best tree.
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Fig. 3. Robust incremental imputation algorithm. (Grey blocks are missing values).

– Step 1.
• Define the input matrix for fusion model; the first ordered y variable

belonging to B block is the response and the complete variables (A
block) are the predictors;

– Step 2.
For k = 1 : q
• Build a supervised tree with V − fold AdaBoost iterations using blocks

A as predictor and Bk as response variable, and use C to impute missing
block Dk;

• Add Bk block to A to make the newA block and add the imputed block
Dk to C one to form the newB block;

– Step 3.
• The matrix is re-defined to impute a new column.
• back to step 1 until all missing variables are completed;

– Output.
• All variable belonging to D block are imputed

Preliminary step prepares the data matrix to the Fusion process. Specific vari-
ables are sorted according to their dependence link with common variables. A
regression or classification tree is built for each specific variable, so these vari-
ables are sorted according to the best obtained root mean squared error (or the
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lower misclassification ratio for categorical case). The first sorted variable be-
longing to the block of the specific ones play the role of response variable in the
first iteration of the iterative imputation process. A supervised tree -as weak
learner for V-fold AdaBoost iterations- is built, as a consequence the common
variables belonging to the receptor file are used to impute the first missing vari-
able. Both this variable and the specific one are included in the complete block
and then the second sorted variable belonging to the specific ones is used as
response variable. The iterative process ends when all variables are imputed.

5 Simulation Study

The performance of the proposed method based on Robust Tree-based Incremen-
tal Imputation (RTII) algorithm has been evaluated in a simulation study.

In this paper, we show an example regarding the imputation of numerical
values, but RTII algorithm provides good performance also on categorical data
(in particular, we use a boosted stump for binary case or a multiclass version
of adaboost algorithm for multi-response case) and, in principal way, when we
have a mixture of variables (both numerical and categorical) in the receptor file.

In this case, classical procedures cannot work, while RTII algorithm executes
all iterations without problems since tree-based models deal with both numerical
and categorical instances. The goal is to estimate punctual values of cases to be
imputed, and then check the overall imputation procedure comparing the im-
puted variables with the control set in terms of their distribution. So, goodness
imputation measures are the mean and standard deviation of imputed variables,
the root mean squared error of used method, a measure of equality of mean be-
tween imputed and control variables using t-test, a measure of equality of vari-
ances between imputed and control variables using Fisher’s test about equality
of variances.

Performance of RTII algorithm has been compared with other methodologies
such as Parametric Imputation via Multiple Regression (PI), Non Parametric
Imputation by Standard Tree (Tree), PCA Fusion according to the Aluja et al.’s
approach in [2].

Table (1) shows the simulation setting.
Simulation study have been defined thinking to reliable situations in which Data

Fusion can be functional, i.e. when the donor file is a set of socio-economics vari-
ables (i.e., age, gender, income, job, etc.). For that reason, a simulated dataset was
built using different random distributions for the set of common variables (Discrete
uniform, Normal, Continue uniform), whereas specific variables were generated in
both cases without relationship with common variables (according to normal and
uniform distribution) and with linear link with other variables. Entire data set
was randomly splitted in two sub-sets (donor file and receptor file), then the part
of specific variables belonging to receptor file was deleted from the data set and
used as control set to check the goodness of imputation.
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Table 1. Description of the simulation setting

Simulation setting
Donor file: 400 observations; Receptor file: 200 observations; Missing values: 1000

Common variables Specific variables
X1 uniform in {18,65} Y1 = k + 0.8X2 − 0.2X4

X2 uniform in [10,100] Y2 = k + 0.2X3 + 0.3X1 + 3X6

X3 uniform in [0,100] Y3 = k + 0.6X5 + 0.5X2

X4 ∼ N(200, 30) Y4 uniform in [50,250]

X5 ∼ N(700, 80) Y5 ∼ N(100, 10)

X6 dummy variable

Fig. 4. Test error progress through AdaBoost iterations

Figure (4) shows test error progress through AdaBoost iterations. The error of
boosted tree is always lower than error of single tree, and it seems to stabilize
at the last tens of iterations, except for the first variable which reaches a stable
rate of error after about 60 iterations.

Table (2) shows the results of our proposal in comparison with some standard
Data Fusion techniques.

In bold the best results are underlined. They correspond to the mean and
standard deviation values closer to the real ones. The performance of RTII al-
gorithm is evaluated in terms of imputed mean, standard deviation, root mean
squared error of the imputation, t-test for equality of means and F-test for
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Table 2. Simulation study: main results

Y1 Y2 Y3 Y4 Y5

Mean 105,550 206,470 313,250 145,700 100,580
Standard deviation 21,866 54,624 69,789 52,529 39,739

RTII Root Mean Squared Error 3,201 4,192 6,309 10,344 8,439
Fisher’s Variance F stat 1,083 1,006 1,005 1,161 1,117

Test P-value 0,287 0,482 0,486 0,146 0,218
Compare Means t stat 0,132 0,027 -0,084 -0,029 0,043

Test P-value 0,447 0,489 0,467 0,488 0,483

Mean 104,200 205,280 314,550 148,190 101,040
Standard deviation 22,034 54,503 69,611 50,490 39,247

Classical Root Mean Squared Error 6,176 8,097 11,701 18,659 15,035
Tree Fisher’s Variance F stat 1,166 1,023 1,013 1,116 1,097

Test P-value 0,140 0,436 0,463 0,220 0,258
Compare Means t stat -0,446 -0,002 -0,073 0,385 0,375

Test P-value 0,328 0,499 0,471 0,350 0,354

Mean 104,170 205,190 311,380 145,890 99,986
Standard deviation 5,454 26,092 35,205 10,522 14,422

PCA Root Mean Squared Error 21,762 46,841 57,996 54,48 38,875
(Aluja Fisher’s Variance F stat 17,840 4,462 3,993 28,763 8,441

approach) Test P-value 0,000 0,000 0,000 0,000 0,000
Compare Means t stat -0,673 -0,309 -0,392 0,027 -0,009

Test P-value 0,251 0,379 0,347 0,489 0,497

Mean 103,030 206,753 315,550 146,800 102,210
Standard deviation 28,006 68,402 81,186 68,051 52,131

Multiple Root Mean Squared Error 17,743 19,979 15,960 24,002 29,218
regression Fisher’s Variance F stat 1,478 1,540 1,536 1,541 1,548

Test P-value 0,003 0,001 0,001 0,001 0,001
Compare Means t stat -0,118 0,001 -0,002 0,004 0,047

Test P-value 0,453 0,500 0,499 0,498 0,481

True Mean 105,300 206,520 313,570 145,780 100,010

True Standard Deviation 23,035 55,114 70,349 56,432 41,901

equality of variances between imputed and control variables. These measures
have been computed also for Parametric Imputation via Multiple Regression
(PI), Non Parametric Imputation by Standard Tree (Tree), PCA Fusion accord-
ing to Aluja et al.’s approach [2]. Always the root mean squared error of RTII
algorithm is lower than other methods, and for all techniques the t-test is not
significant.

As well-known in literature, a common problem concerning to classical im-
putation methods is to reduce, in a significant way, the variance of imputed
distribution [10]. Considering this aspect, a method gives good results, when
the imputation process doesn’t involve a significant reduction of variance in
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caparison with missing distribution. According to this point of view, Fishers
test about equality of variances, has been used to compare the goodness of the
different considered methodologies.

Reading the table (2) it can be noticed how all variables imputed via Multiple
regression and PCA approach very often have a P-value of Fisher’s Test close to
zero, which drives to refuse the null hypothesis about equality of variances. On
the contrary for the imputation via RTII algorithm and standard trees, the null
hypothesis is never refused.

In our opinion, this is an important remark because tree-based methods, as
non- parametric tools, are determinant not only for the imputation of missing
values but above all in terms of variability reconstruction. Boosting algorithms
make the estimate of missing variables more robust, as it can be seen looking at
lower root mean squared errors.

6 Concluding Remarks

Data Fusion can be considered as a special case of data imputation where the val-
ues to be imputed are those allowing the merging between two different sample
surveys [12]. This paper has provided a methodology for Data Fusion charac-
terized by three features: first, it considers an explicit nonparametric method
using a tree-based model; second, the recursive partitioning for data imputa-
tion makes use of an incremental approach where more and more information
is added to the data matrix; third, the tree validation is robust since boosting
iterations are performed. The overall method called Robust Tree-based Incremen-
tal Imputation presents two special advantages. First, it can be considered for
a mixed data structure that includes both numerical and categorical variables.
Second, it allows to reconstruct the imputed variable distribution in terms of
both mean and variance. Indeed, in the simulation case study we have shown
that this reconstruction is more accurate compared to other standard methods.
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Abstract. The progression of many biological and medical processes
such as disease and development are inherently temporal in nature. How-
ever many datasets associated with such processes are from cross-section
studies, meaning they provide a snapshot of a particular process across
a population, but do not actually contain any temporal information. In
this paper we address this by constructing temporal orderings of cross-
section data samples using minimum spanning tree methods for weighted
graphs. We call these reconstructed orderings pseudo time-series and
incorporate them into temporal models such as dynamic Bayesian net-
works. Results from our preliminary study show that including pseudo
temporal information improves classification performance. We conclude
by outlining future directions for this research, including considering dif-
ferent methods for time-series construction and other temporal modelling
approaches.

Keywords: Pseudo Time-Series, Cross-Section Data, Dynamic Bayesian
networks, PQ Trees.

1 Introduction

Cross-section data record certain attributes across a population, thus providing a
snapshot of a particular process but without any measurement of progression of
the process over time. The progression of many biological and medical processes
such as disease and development are inherently temporal in nature. However,
many datasets associated with the study of such processes are often cross-section
and the time dimension is often not incorporated or used in analyses. If we could
reconstruct time-series from cross-section data, then it would allow many more
datasets to be made available for building temporal models. For example, the
vast amount of data based upon cross-section studies could be combined into
pseudo time-series and temporal models built to explore the dynamics within.

In this paper, we update an existing algorithm that is based on minimum
spanning tree methods for weighted graphs to reconstruct temporal orderings
in cross-section data samples [8] and take this idea a step further by learning
temporal models from such ordered data. We make use of Dynamic Bayesian
Networks (DBNs) [4] to model the pseudo time-series. Bayesian networks model
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the data probabilistically and offer the advantage of being easily interpreted
by non-statisticians. Previously, we have used DBNs extensively to model and
classify data [12,13,15].

Converting cross-section studies into temporal data has the potential to allow
many more novel analyses that were previously impossible, as well as allowing
them to be incorporated into temporal models. For example, the forecasting
of data based upon existing observations, and improved classification by using
observations from ‘earlier’ points in the pseudo time-series. There is very little
related work in this area and the closest studies involve combining a mixture of
temporal and non-temporal data (such as cross-section study data) into single
models. This work was mostly in the field of economics in the 1960s and 1970s
[7] and more recently [11]. Another related research area involves the use of
manifold techniques in conjunction with semi-supervised learning where only
some cases are labelled with a class in a dataset. Unclassified datapoints are
labelled based upon the distribution of other classified nearby points within the
dataspace [1]. However, unlike our proposed method, this does not take into
account the ordering of points in a sequence within the space.

This paper is organised as follows. Section 2.1 introduces pseudo time-series
construction for cross-section data. Sections 2.2 and 2.3 describe Bayesian net-
work models and how these can be applied to pseudo time-series of cross-sectional
data. We apply our analysis to two cross-sectional datasets from the medical and
biological domains, as described in section 3. Finally we present our conclusions
in section 4.

2 Methods

2.1 Learning Pseudo Time-Series

In order to reconstruct time-series of multidimensional data samples we use an
algorithm introduced by Magwene et al. [8] that is based on Minimum Spanning
Tree (MST) methods for weighted graphs. Magwene et al. use their algorithm
to estimate the temporal orderings of microarray gene expression data. The
method uses a weighted graph where each vertex represents a data point. A
pairwise distance function (such as Euclidean distance) is used to provide the
edge weights. The approach is based upon the idea of modelling the dynamics of
the data by visualising the trajectory of the data series through multidimensional
space [10]. The weighted graph constructed from the data samples and its MST
can be visualised in 2-D or 3-D space using principal coordinates methodology,
thus providing a geometric interpretation of the data series. For example, Fig. 1
shows the weighted graph and its MST in 2-D for a small dataset consisting of
14 samples.

An initial ordering of the data samples can be constructed by converting the
MST to a PQ tree. PQ trees [2] are a graph-structure device that can represent
an ordering of points, and indicate which parts of the ordering are well-supported
(Q-nodes) and which parts contain more uncertainty (P-nodes). Whilst the chil-
dren of a P-node can be put into any order, children of a Q-node may be reversed
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Fig. 1. From weighted graph to minimum spanning tree: (a) the weighted graph for a
small dataset consisting of 14 sample points. Each edge is weighted with the distance
between its corresponding vertices. Weights are not shown on this graph. (b) the MST
for the weighted graph, with vertices (data points) labelled A-N.

in order but may not otherwise be reordered. The diameter path of the MST
is used as the main Q-node of the PQ tree - the backbone of the reconstructed
ordering. Branches off the diameter path are added as P and Q nodes to the
main Q node. Therefore, the constructed PQ-tree represents a partial ordering
of the data samples. The PQ-tree for the weighted graph and MST in Fig. 1 is
shown in Fig. 2a.

In practice, we have found that many PQ-Tree orderings contain a high degree
of uncertainty in the P-nodes and on larger datasets an exhaustive search is not
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Fig. 2. (a) Shows a PQ-tree for a small dataset consisting of 14 points, labelled A-N.
The weighted graph and MST for this dataset is shown in Fig. 1 (b) Final ordering
shown as a trajectory in 2-D principal coordinates after hill-climb search on PQ-tree.
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feasible. To resolve this we use a hill-climbing search to optimise the ordering at
each P-node by minimising the total length of the sequence based upon the Eu-
clidean distance. This process produces a full ordering of the samples upon which
we can base further analysis of the data using temporal models (see Fig. 2b).
We refer to this ordering as the pseudo time-series or temporal ordering.

2.2 Bayesian Network Models

Here we use Dynamic Bayesian Networks (DBNs) [4] to model the temporal
relationships in pseudo time-series though in future work we intend to explore
various time-series and sequence models. Bayesian Networks (BNs) [6] are prob-
abilistic models that can be used to model data transparently. This means that it
is relatively easy to explain to non-statisticians how the data are being modelled
unlike other ‘black box’ methods. DBNs are an extension of BNs to handle the
sort of relationships that are found in time-series.

A BN consists of two components. The first is a Directed Acyclic Graph
(DAG) consisting of links between nodes that represent variables in the domain.
The second component is a set of conditional probability distributions associated
with each node. These probability distributions may be modelled using discrete
(tables) or continuous (e.g. Gaussian) distributions. If there is a link from node
A to another node B, then A is said to be a parent of B, and B is a child
or descendant of A. The directed arcs between nodes indicate the existence
of conditional independence relations between variables, whilst the strengths of
these influences are quantified by the conditional probabilities. It should be noted
that for any one network there will be a family of other networks that encode
the same independence relations. These are known as the equivalence class. In
DBNs, BNs are extended with additional nodes that are used to represent the

(a) (b)

Fig. 3. (a) A typical BNC with n variables. The class node C represents a classification
of each data sample. (b) In a DBNC model, links occur between variables over time
and within the same time slice. This DBNC has n variables and 2 time slices, t and
t − 1.
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variables at differing time slices. Therefore links occur between nodes over time
and within the same time slice. BNs and DBNs can be used to classify data by
simply adding a class node that represents the classification of a data sample,
as shown in Fig. 3. These classifiers are known as Bayesian Network Classifiers
(BNCs) [3]and Dynamic Bayesian Network Classifiers (DBNCs) [14].

2.3 Pseudo Temporal Model Construction

Using the pseudo temporal ordering of the data samples we can build a DBNC
model of the dataset. The idea is that the inclusion of temporal information
should improve model performance. In the remainder of the paper we investi-
gate this claim using both a medical and a biological dataset concerning disease
development and compare the classification performance of a BNC and a DBNC
based on the pseudo time-series. The whole process for creating a pseudo tem-
poral model of cross-section data is described in Algorithm 1.

Algorithm 1. Pseudo temporal model construction
1: Input: Cross-section data
2: Construct weighted graph and MST
3: Construct PQ tree from MST
4: Derive pseudo time-series from PQ-tree using a hill-climb search on P-nodes to

minimise sequence length
5: Build DBNC model using pseudo temporal ordering of samples
6: Output: Temporal model of cross-section data

3 Experiments and Results

In this section we present results from experiments to investigate whether the
inclusion of pseudo temporal information improves model performance. We con-
sider two cross-section datasets: B-cell lymphoma microarray data and glaucoma
visual field data and focus on the classification of healthy and diseased samples.

For both datasets we construct pseudo temporal orderings of the disease pro-
gression using Euclidean distance weighted graphs, PQ-trees and hill-climbing
search to optimise sequence length (as described in section 2.1). We then com-
pare the classification performance of a DBNC learnt from the pseudo time-series
against a BNC learnt with no temporal information, to see if the temporal re-
lationships improve classification. For the B-cell dataset experts were able to
provide us with an assumed ordering of the data samples according to disease
progression so we are able to compare this with the pseudo ordering.

In order to assess the performance of a classifier and to compare different
classifiers, it is common practice to use Receiver Operator Characteristic (ROC)
curves [5]. An ROC curve allows one to view graphically the performance of a
classifier by plotting the sensitivity (which in our case is the proportion of cor-
rectly classified positives) against the specificity (the proportion of misclassified
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positives) for varying thresholds used by the Bayesian classifiers. The perfect
classifier would have a ROC curve that follows the top-left corner of the unit
square, whereas the worst situation would be a classifier whose curve follows the
diagonal. Real applications will usually show curves between these two extremes.
A global measure of the classifier performance, often used in classification prob-
lems, is the Area Under the ROC Curve (AUC). This will be some value between
0.5, associated to the diagonal of the square, and 1, corresponding to the curve
that follows the top-left corner. We use this to score the classifiers learnt from
the two real-world datasets.

A leave-one-out cross-validation approach was adopted for the B-cell data due
to the small number of samples for this dataset, whereas for the visual-field data,
we have two independent datasets. A cross section dataset which is used to train
pseudo time-series models from and a set of short-time series from a longitudinal
study is used to test the models. We repeat the model learning and classification
for each fold 10 times using a bootstrap approach in order to get confidence
intervals on the mean AUC. For the B-Cell data which has 3 classes, the mean
of the AUCs for all comparisons is calculated. In other words, the mean AUC
for classifying class 0 from 1 or 2, class 1 from 0 or 2, and class 2 from 0 or 1 is
used. See [9] for how ROC analysis can be performed on multi-class problems.

Sections 3.1 and 3.2 present our results for the B-cell lymphoma and glaucoma
datasets respectively.

3.1 B-Cell Lymphoma

Dataset. This dataset concerns a short cross-section study measuring gene
expression for 26 patients across a set of B-cell lymphomas and leukaemias. For
each patient we know whether the disease is present and how advanced it is;
each sample is classified into one of three classes - healthy, diseased (early) or
diseased (late).

Learning the Pseudo Time-Series. Using the expert (biologists) ordering, we
labelled the samples from 1 to 26. Table 1 lists the ordering given by biologists,
the initial PQ-tree and the PQ-tree obtained after hill-climb search on its P-
nodes. We can see that the biologists ordering is optimal in terms of sequence
length. The hill-climb improves on the initial PQ-tree both in terms of sequence
length and similarity to the biologists ordering. Figure 4a shows a plot of the
data samples, labelled by classification in 2-D principal coordinates. Figure 4b
shows the multidimensional trajectory 3-D plot of the ordering produced by the
PQ-tree/hill-climb. We can see that the trajectory has a clear start and end
point and that the classes seem to be dispersed over this trajectory. The shape
of this trajectory along with the similarity between the biologists ordering and
the PQ-Tree/hill climb ordering imply that the natural ordering can indeed be
learnt from such data.

Temporal Models. Next we applied a number of classifier models to the
dataset and compared the results. We considered a BNC (no temporal informa-
tion), and DBNCs for the expert ordering and the pseudo ordering. The results
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Table 1. B-cell data sample orderings obtained from biologists, PQ-tree and PQ-tree
with hill-climb search on P-nodes

Ordering Sequence length

Biologist 1-26 512.0506

PQ-tree 1-6,7,9,8,11,10,12-18,26,19,21,20,22-25 528.9907

PQ-tree 1-18,26,19-25 521.1865
and hill-climb

(a) (b)

Fig. 4. (a) Shows the B-cell data samples plotted in 2-D principal coordinates, with
their classification. Class 0 is healthy, Class 1 is diseased (early) and Class 2 is diseased
(late). (b) shows the B-cell temporal ordering as a 3D trajectory. Notice that there is
a clear start and end point.

Fig. 5. Model comparison for B-cell data: Mean Area Under the ROC Curve: BNC,
Pseudo DBNC
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of the ROC analysis of these classifiers show that the DBNC architecture is best
for this dataset, as the pseudo and biologists ordering gain the highest mean
AUC (see Figure 5). Notice that the expert ordering gives a slightly improved
AUC but that the pseudo time-series results in a significantly improved AUC.
This graph implies that if we can find a good ordering on cross-section data
then we can indeed learn useful temporal relationships to improve non-temporal
models. We also generated a random ordering and learnt a DBNC architecture
to see to what extent spurious relationships could affect the classification. Indeed
a random ordering DBNC decreases the performance to lower than that for a
BNC (an accuracy of 0.7 and AUC of 0.84), so it is essential that an accurate
temporal ordering is used to avoid spurious relationships being discovered.

3.2 Glaucoma and Visual Field Deterioration

Data. Our second application concerns Visual Field (VF) data. We have a
large cross-section study on 162 people concerning glaucoma, an eye disease
that leads to the progressive deterioration of the field of vision. For each patient
the dataset contains a visual field test, which assesses the sensitivity of the retina
to light. The data for each patient is classified into one of two classes: healthy or
glaucomatous based upon clinical observation of the tests. We use this dataset
as the training set to learn the pseudo time-series from.

For testing the pseudo time-series, we use another VF dataset. This contains
a set of time-series for 24 patients attending the Ocular Hypertension Clinic
at Moorfields Eye Hospital. All of these patients initially had normal VFs but
developed reproducible glaucomatous VF damage in a reliable VF in their right
eye during the course of follow-up. This dataset can be used as an independent
and unseen data set to evaluate the learnt pseudo temporal models.

Learning the Pseudo Time-Series. Using an arbitrary ordering (as we have
no known expert ordering for this data), we generate the PQ-Tree and calculate
the distance of the PQ-tree obtained after hill-climb search on its P-nodes. This
was found to be 4462.6 as opposed to 5244.3 prior to the hill-climb. Figure 6
shows the allocation of classes in the first two principal coordinates.Notice that
there is an obvious starting point in the dataspace where the healthy patients
are clustered and that these ‘fan’ out towards different regions in the space for
the glaucomatous patients.

Temporal Models. Next we applied a BNC and a DBNC using the pseudo
time-series to the dataset and compared the results. Figure 7 shows the mean
AUC and the confidence limits for the BNC and the Pseudo DBNC. It is clear
that the mean AUC improves and the variation reduces when the pseudo tempo-
ral links are included. This implies that, whilst there is increased risk of spurious
relationships when looking for pseudo temporal links, if a good ordering can be
found the additional temporal links can improve accuracy.
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Fig. 6. VF data in 2D space showing the classification of glaucoma

Fig. 7. VF data Area Under Curve Comparison: BNC, Pseudo

4 Conclusions and Future Work

In this paper we propose a method for incorporating temporal information into
cross-section data models. Using an updated existing algorithm based on min-
imum spanning tree methods for weighted graphs we construct pseudo time-
series and include them in temporal models such as dynamic Bayesian network
classifiers. In this study our results on medical and biological datasets concern-
ing disease development show that including pseudo temporal information does
improve classification performance. However, this research is very preliminary -
whilst we have evaluated the methodology on two datasets, they are of relatively
small size and the pseudo-temporal model accuracies improve on the static mod-
els by only a few percentage points.

There are many directions for future research. The results show that find-
ing an accurate pseudo time-series is crucial - an incorrect ordering of samples
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can worsen the performance of the classifier and increase the risk of spurious
correlation. Different methods for ordering the data such as fitting polynomials
through the Euclidean space will be considered in future work. Additionally, we
only considered Bayesian networks to model the data. In future, we will look
at different temporal models to see which best capture the dynamics. For ex-
ample, a better way to model the pseudo time-series could be using continuous
time models. There are also many issues concerning bias in different studies and
experiments. In other words, how is it possible to combine several studies that
sit in very different areas of Euclidean space due to experimental bias. Lastly,
it would be interesting to see if we could model several trajectories that cover
different areas of the dataspace. For example, the VF data looks as though there
are different regions of the dataspace that patients move into, based upon dif-
ferent forms of glaucoma. Rather than fitting one trajectory based upon a single
ordering, it may be better to explore fitting numerous trajectories.
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Abstract. Many sequential data sets have a segmental structure, and
similar types of segments occur repeatedly. We consider sequences where
the underlying phenomenon of interest is governed by a small set of
models that change over time. Potential examples of such data are en-
vironmental, genomic, and economic sequences. Given a target sequence
and a (possibly multivariate) sequence of observation values, we con-
sider the problem of finding a small collection of models that can be
used to explain the target phenomenon in a piecewise fashion using the
observation values. We assume the same model will be used for multiple
segments. We give an algorithm for this task based on first segmenting
the sequence using dynamic programming, and then using k-median or
facility location techniques to find the optimal set of models. We report
on some experimental results.

1 Introduction

Sequential data occur in many applications and finding out the structure of
the underlying process that generates such data is one of the key tasks in data
mining and data analysis in general. In practice many prediction or modeling
tasks can have a segmental structure: different models are valid in different
segments. For example, high solar radiation implies clear skies, which in the
summer means warm temperatures and in the winter cold ones. As another
example, the inheritance mechanism of recombinations in chromosomes mean
that a genome sequence can be explained by using a small number of ancestral
models in a segment-wise fashion. In these examples, the model used to explain
the target variable changes relatively seldom, and has a strong effect on the
sequence. Moreover, same models are used repeatedly in different segments: the
summer model works in any summer segment, and the same ancestor contributes
different segments of the genome.

To find such structure, one must be able to do segmentation based not on
the target to be predicted itself, but on which model can be used to predict the
target variable. In this paper we describe an approach that can be used to search
for structure of this type. Given a model class M, we search for a small set of h
models from M and a segmentation of the sequence into k segments such that
the behavior of each segment is explained well by a single model. We assume that
h $ k, i.e., the same model will be used for multiple segments. Previously, the
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idea for searching for recurrent models has been used in the context of finding
piecewise constant approximations [6]. Here we use the approach to arbitrary
predictive models; this requires considerably different techniques. For any but
the simplest model class the problem of finding the best h models is an NP-hard
task, so we have to resort to approximate techniques.

Given a sequence and a class of models, we first use dynamic programming to
find a good segmentation of the sequence into k segments. Thus each segment
will have its unique predictive model. After that, from the k models found in
the segmentation step we select a smaller number of h models that can be used
to model well the whole sequence. Selecting a smaller number of models is done
using the k-median [19] or the facility location approach [12], depending on
whether we wish to fix the number of models in advance or allow the method to
decide a good number of models. The method for finding the model describing
a single segment depends, of course, on the model class M.

We have applied the method to two sets of real data, meteorological measure-
ments, and haplotypes in the human genome. The experimental results show
that the method produces intuitive results and is reasonably efficient.

The rest of this paper is organized as follows. We give a brief overview of
related work in Section 2. In Section 3 we present the notation and we give
the problem definition. The basic algorithms for both segmentation and model
selection are described in Section 4. Empirical results on two different data sets
are discussed in Section 5, and a short conclusion is presented in Section 6.

2 Related Work

Segmentation of sequences is a widely studied problem, starting from the classical
paper of Bellman [1]. Segmentation has been applied to various applications,
including time series [15], stream data from mobile devices [10] and genomic
data [17,18] to mention a few.

Recently work has been done on finding segments with different complexi-
ties [8] and segmenting multivariate sequences in such a way that the data in
each segment has a low dimensional representation [2]. Also a lot of work has
been done in finding more efficient algorithms [7,22,21].

Our work is related to the (k, h)-segmentation problem [6]: given a sequence of
length n, find a good way to divide it into k segments, each of which comes from
h different sources. For example, one may wish to segment a time series into k
segments in such a way that in each segment the time series can be approximated
well by one of the h constants. Our work extends this approach: we not only wish
to model the sequence in a piecewise manner, but predict the target sequence in
a piecewise fashion using the observation values and one of h models from some
model class M.

Segmentation based on sequence modeling has been done using specific classes
of models, such as burstiness [16] or Hidden Markov models [20]. One should note
that our approach differs from these in that while e.g., HMMs associate segments
with hidden variables and corresponding emission probabilities, we use different
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kinds of models, e.g., regression models, predictive models, etc. Moreover, unlike
HMMs we do not have transition probabilities between models.

3 Problem Definition

Data. We are given a sequence of n data points D = (X,y). The i-th data point,
i = 1 . . . n, consists of a vector of d observation values X[i] and an outcome
value y[i]. In other words, X[i], i = 1 . . . n is a d-dimensional vector while y[i]
is a scalar. Depending on the application X[i] and y[i] may both take arbitrary
real values, or both be binary, or it is possible that X[i] is real valued while the
outcome values are binary, i.e., y[i] ∈ {0, 1}.

Segmentations. For 1 ≤ i ≤ j ≤ n we write D[i..j] = (X[i..j],y[i..j]) to de-
note the subsequence of the input sequence between the i-th and j-th data
points (so D[1..n] = D). We consider segmentations of the input sequence.
A k-segmentation is a partition of the input sequence into k continuous and
non-overlapping segments. More formally, a k-segmentation of D, denoted by
D = (D1, . . . ,Dk), is defined by k + 1 boundary points 1 = b1 ≤ b2 ≤ . . . ≤ bk ≤
bk+1 = n + 1 such that the j-th segment Dj is the subsequence D[bj ..bj+1 − 1].

Prediction. A model M is a function M : R
d → R. A model class M is a set of

models. The set of models M may be parameterized by a set of parameters θ
(e.g., regression models), or it may consists of a finite set of fixed models.

We want to find models in the model class M that correctly predict the
outcome value y[i] of the i-th data point, given the observation vector X[i].
Given a subsequence D[i..j] and a model M we define the prediction error of
model M on D[i..j] as

E(D[i..j], M) =
j∑

t=i

(M(X[t])− y[t])2. (1)

The task of predicting a binary outcome value (y[i] ∈ {0, 1}) is called binary clas-
sification. If y[i] is binary and M(X[i]) outputs binary values, the least squares
error defined by equation 1 is simply the number of misclassifications.

For many commonly used model classesM we can compute in polynomial time
the model M∗ ∈M that minimizes the error in equation (1). For example for the
class of linear models the optimal model can be computed using least squares. For
probabilistic models we can compute the maximum likelihood model. Even for
cases that finding the optimal model is computationally difficult (e.g., decision
trees [13]) effective heuristics are usually available. So in this paper we assume
that we can always find a good model for a given subsequence.

We now define our first problem: segmenting a sequence and finding per-
segment models in order to minimize the total prediction error.

Problem 1. Given an input sequence D, a model class M, and a number k, seg-
ment D into k segments (D1, . . . ,Dk) and find corresponding models {M1, . . . ,

Mk} ∈ M so that the overall prediction error
∑k

j=1 E(Dj , Mj) is minimized.
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Recurrent models. In Problem 1 we search for a k-segmentation of the input
sequence and we allow each segment to be fitted with a separate model. A more
demanding task is to search for recurrent predictive models. In this case, we
want to obtain a k-segmentation, as well, but we allow only a small number of
h distinct models (h < k). Thus, some of the models have to be used to fit more
than one segments. More formally we define the following problem.

Problem 2. Consider a sequence D, a model class M, and numbers k and h.
We want to find a k-segmentation of D into k-segments (D1, . . . ,Dk), h models
M1, . . . , Mh ∈ M, and an assignment of each segment j to a model Mm(j),
m(j) ∈ {1, . . . , h} so that the prediction error

∑k
j=1 E(Dj , Mm(j)) is minimized.

Note that if the model class M is large, there is a serious risk of overfitting.
Therefore, when applicable, the usage of cross-validation is recommended.

4 Algorithms

We first discuss the components of our algorithm and then in Section 4.4 we
describe how we put all the components together.

4.1 Dynamic Programming

Problem 1 can be solved optimally in polynomial time by dynamic program-
ming [1]. The main idea is to perform the computation in an incremental fash-
ion using an (n × k)-size table A, where the entry A[i, p] denotes the error of
segmenting the sequence D[1..i] using at most p segments. The computation of
the entries of table A is based on the equation

A[i, p] = min
1≤j≤i

(
A[j − 1, p− 1] + E(D[j..i], M∗

ji)
)
, (2)

where E(D[j..i], M∗
ji) is the minimum error that can be obtained for the subse-

quence D[j..i], that is, M∗
ji is the optimal model for that subsequence.

As we have already mentioned, the optimal model M∗
ji and thus also the

error E(D[j..i], M∗
ji) can be computed in polynomial time. If T (|i − j|) is the

time required to compute M∗
ji, then the overall running time of the dynamic

programming algorithm is O(n2(k + T (n))). In some cases the computation can
be speeded up using precomputation and the fact that we compute many models
simultaneously. For instance, for computing least-square models, even though
computing a single model M∗

ji requires time O(|i − j|), computing all n(n−1)
2

models requires time O(n2) (i.e., constant amortized time) leading to overall
running time for the dynamic programming equal to O(n2k).

4.2 Clustering Algorithms

Let us turn to Problem 2. Recall that we want to find a k-segmentation of the
sequence, h models (h < k), and an assignment for each segment to one of those
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h models. We start by performing a k-segmentation (D1, . . . ,Dk) with k mod-
els {M1, . . . , Mk}, as in described in Section 4.1. We then fix the segmentation
and proceed with selecting the best h models and finding the assignment from
segments to models. This approach of first segmenting and then clustering is mo-
tivated by previous work [6], in which it has been shown to be a good approach.
We consider the following alternatives.

k-median algorithm. We select the h models to be among the set {M1, . . . , Mk}.
For each segment Di, i = 1, . . . , k and each model Mj, j = 1, . . . , k, we first
compute the error cij = E(Di, Mj). The problem of selecting the best h models
is now transformed to the k-median problem, which is defined as follows: Given
n objects (in our case the k segments), m service points (in our case the k
models), and a cost function cij for each object-service point pair, select h service
points so that the total cost of each object to its nearest selected service point
is minimized. The k-median problem is NP-hard [5]. If the costs cij satisfy the
triangle inequality, then it can be approximated within a constant factor [3]. In
our case however the cost between two service points (models) or two objects
(segments) is not defined. In the general case, where the costs do not form a
metric the situation is more complex: the best known approximation algorithm
is the one provided by Lin and Vitter [19], which provides an (1+ 1

ε )-approximate
solution but it uses O(k(1 + ε) log n) medians instead of k.

A simple scheme for solving the k-median problem is provided by a k-means
type iterative algorithm: start by picking k service points at random to be the
set of medians, then alternatively assign each object to the closest median and
recompute the median. The new median is computed by taking all objects as-
signed to the old median and finding the service point for which the total cost
of these objects to the chosen service point is minimized. Though this scheme
only converges to a local minimum, in practice it often finds a good solution
efficiently. Notice that for small values of k and h, the problem can be solved
optimally by exhaustive search — considering all

(
k
h

)
model combinations.

Facility location algorithm. The facility location problem differs from the k-
median on the fact that there is no restriction on the number of service points
(facilities) to be selected. Instead, each possible service point has an “opening”
cost, and the objective is to minimize the total cost of opening service points
plus the sum of costs from each point to its closest opened service point. More
formally, we are given a set of service points F , a set of objects C, costs fj for
opening a service point j ∈ F , and distances dji for each j ∈ F and i ∈ C.
The task is to find a set of service points to open, that is, find S ⊆ F to
minimize Z(S), where Z(S) =

∑
i∈C minj∈S dji +

∑
j∈S fj .We use the facility

location problem to give a minimum description length (MDL) interpretation to
the model selection process. In particular, the set of service points is the set of
models {M1, . . . , Mk} and the set of objects are the segments Di, i = 1, . . . , k
found in the k-segmentation phase. The distance dji from j to i is set to be
the error E(Di, Mj), and the cost fj of using a additional model j (opening a
service point) is set to be the description length of the model j, measured in
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bits. Consequently, the task is to find the optimal set of models that minimizes
the overall description of the selected models plus the description of the data
given the models. Since models in a model class are usually of equal complexity,
it is meaningful to have a constant cost for all service points. The choice of the
cost depends on the application. Higher cost means a larger penalty for adding
a new model.

In the general case, when the costs dji do not satisfy the triangle inequality,
the facility location problem can be approximated to O(log n) factor [12], and
no better approximation factor is better, unless NP ⊂ DTIME(nlog log n) [4].

4.3 Iterative Improvement Algorithm

This is a variant of the popular EM algorithm, and it can be used to re-
fine/improve existing solutions, e.g., solutions obtained with the previous al-
gorithms. The algorithm iteratively improves the current models by fitting them
more accurate in the existing segments, and then it finds a new segmentation
given the improved models. The iteration continues until the error of the solution
does not improve any more. The two steps of the iteration are the following.

Step 1: The current solution consists of a k-segmentation (D1, . . . ,Dk) of the
input sequence and h models {M1, . . . , Mh}. Let Dj be the set containing all the
points in those segments that are assigned to the model Mt, t = 1, . . . , h, that
is Dt = {D[i] | D[i] ∈ Dj and arg minl E(Dj , Ml) = t}. Each model Mt is then
replaced by M ′

t, which is computed to be the optimal given all the points in Dt.
Step 2: Given the improved models M ′

t a new k-segmentation is computed using
a slight modification to the dynamic programming algorithm. In particular, the
term E(D[j..i], M∗

ji) is replaced by minh
t=1 E(D[j..i], M ′

t), that is, the best among
the h given models M ′

t is used for the subsequence D[j..i].

4.4 Putting Everything Together

Assume first that we want to segment the input sequence into k segments, using
h predictive models, where the numbers k and h are given. Our algorithms
starts by first segmenting the sequence into k segments, where each segment
has its own predictive model. This segmentation task is performed using the
dynamic programming algorithm, described in Section 4.1. We then treat the
problem of reducing the number of models as a clustering problem, in which
each of a k segments should be represented by one model from a smaller set of h
models. We solve this task using the k-median or k-means algorithms, described
in Section 4.2. Then we apply the iterative improvement algorithm described in
Section 4.3 in order to refine the solution obtained in the previous steps.

Consider now the general case, in which the parameters k and h are not given,
but need to be determined from the data. We address this model selection prob-
lem using the Bayesian information criterion (BIC). Since the error decreases
when k and h increase, BIC suggests adding a penalty score to the error, which
depends on the complexity of the model. Details on the BIC can be found in [9].
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Under the Gaussian model with unit variance the BIC score is defined as BIC =
E + P log(N), where E is the total sum of squares and P is the number of
parameters. In our case, the number of parameters of the model is proportional
to k and h. For our experiments we used P = ck + dh, where c and d are
small integers that depend on the exact predictive model we use. For the model
selection process, given upper bound values of k and h, we try all combinations
of k segments with h models and we select the pair of parameters that yield the
lowest BIC score.

Notice that if we use the facility location algorithm for clustering, we only have
to iterate over the number of segments k. For each value of k the corresponding
value of h that minimizes the BIC score is automatically selected by the facility
location algorithm.

5 Experimental Data

A beautiful example of how this approach works in practice is provided by look-
ing the task of predicting temperature based on solar radiation. While the appli-
cation itself can be considered rather trivial, it nevertheless demonstrates how
recurring models can be found when a segmental structure exists.

The motivation for this work originally stemmed from the desire to find recur-
rent models for explaining aerosol particle formation bursts in nature [14]. After
repeated experiments we were forced to conclude that no such recurrent models
with segmental structure exist and turn to other applications. We include a short
description of this problem as in its way it is quite illustrative.

A somewhat different example is the haplotype prediction task: given d haplo-
types and n markers, the task is to predict the marker value at a target haplotype.
In theory this corresponds to reconstructing a haplotype in k parts, using only
parts from h different ancestors.

5.1 Recurring Models in Environmental Data

The temperature prediction task. In nature various phenomena, such as tempera-
ture, follow a seasonal cycle. It seems reasonable to assume that different models
might be needed to describe such phenomena in different seasons. Consider the
problem of predicting the average daytime temperature based on solar radiation
levels using linear regression. We expect different models to be valid in the sum-
mer, when high solar radiation days are the sunny and warm ones, and in the
winter, when high solar radiation implies clear skies and cold temperatures.

We have searched for recurrent predictive models over three years of data
consisting of daytime mean values of temperature and photosynthetically active
radiation. Using the Bayesian information criterion (BIC) we can conclude that
seven segments is an optimal choice, see Figure 1(a). This corresponds nicely
with the fact that our data set runs over 4 winters and 3 summers. The models
are summarized in Table 1. Note that the segmentation divides the time interval
considered into winter and summer segments. Though not identical, the winter
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Fig. 1. The Bayesian information criterion (BIC) score as a function of the number of
segments. (a) Temperature prediction task. (b) Aerosol particle formation prediction.

models resemble each other, as do the models valid in the summer segments.
This is also apparent in Figure 2(a), which shows the error rate of the different
models in a sliding window of width 40 days. It is evident, that there is a group
of models which work well in the winter segments and another group of models
for the summer segments. Two models will therefore probably be sufficient and
we continue by looking for a good pair of models. Note, that the error can be
arbitrarily large in the segments where the model is not valid.

Because the number of models we look for is small, we can do an exhaustive
search. The chosen models are indicated in the third column in Table 1 and the
fourth column gives the segments on which each of the two models is used. As
a last step, the two models are refitted over the segments where they are valid.
The final models are given in the fifth column.

Table 1. Temperature prediction task. The first column specifies the segment. The
model valid in that segment is given in the next column. Since we are looking for
recurring models, only two of these are chosen; these are indicated in the third column.
Which one of these is used in the two model situation in each segment is indicated by
the fourth column. The last column gives the winter and summer models, fitted over
the corresponding intervals as given in the fourth column.

segment model chosen used refitted

2000/01/01 − 2000/04/16 0.18R − 0.84 W W 0.27R − 0.76
2000/04/17 − 2000/12/16 0.38R + 0.42 S
2000/12/17 − 2001/04/22 0.16R − 0.85 W
2001/04/23 − 2001/10/19 0.30R + 0.66 S S 0.36R + 0.57
2001/10/20 − 2002/04/21 0.24R − 0.65 W
2002/04/22 − 2002/09/17 0.18R + 0.89 S
2002/09/18 − 2002/12/31 0.82R − 0.45 W
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Fig. 2. The error for the (7,7) models in a sliding window of width 40 days. (a)
Temperature prediction task. There are clearly two groups of models: one group which
performs well on the winter segments and badly in the summer segments and another
group with opposite performance behavior. (b) Aerosol particle formation prediction.

The cross-validated test errors for the optimal number of segments is shown
in Table 2. Notice, that two models perform approximately as well as using a
separate model for each segment, and is significantly better than using a single
model for all days.

Aerosol particle formation. Another example of an environmental application is
provided by the problem that was the original motivation of this work. In na-
ture spontaneous bursts of aerosol particle formation occur frequently, and finding
which factors are behind this phenomenon is an important question in atmospheric
research [14]. Since this phenomenon has clear seasonal variation, it is reasonable
to ask whether not only the occurrence pattern but also the causes behind the
phenomenon would vary seasonally. Though the answer to this question turned
out to be negative, we include this example to illustrate what happens when no
segmental structure exists, as this case is also of great interest.

Our data consists of a set of meteorological measurements X and a target
variable y telling us for each day t whether a particle formation burst occurred
(y(t) = 1) or not (y(t) = 0). To keep this example simple we choose out of the
various meteorological measurements only two variables known to be linked to
particle formation bursts. We did much more extensive experiments with much
the same results.

The cross-validated test errors for seven segments is shown in Table 2. This
time there is no optimal choice of segments, see Figure 1(b), so we use this just
to have one example of model performance. Notice, that now the segmented mod-
els perform no better than using a single model for the whole interval. Looking at
Figure 2(b) we see no evidence of recurring models; if anything, it seems that some
parts of the sequence are easier and some are more difficult to predict, even if seg-
mentation in theory allows us to fit a particular model in a more difficult segment.
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Table 2. Test scores for different choices of models. The given numbers are averages
over 5-fold cross-validation. (a) Temperature prediction task. (b) Aerosol particle for-
mation prediction. The score is defined as the sum of squared errors divided by the
number of points for continuous variables (a) and as the number of misclassifications
divided by the number of points for binary classification tasks (b).

models (a) (b)

different model for each segment 0.24 0.10
two models selected from the above 0.27 0.09
two models optimized over valid segments 0.27 0.10
single model for all days 0.59 0.10

5.2 The Haplotype Prediction Task

The haplotype prediction task is defined as follows: given d strings (haplotypes)
of length n (markers), the task is to predict the value at a target string (haplo-
type). That is, we wish to represent a string using pieces from other strings. In
theory, the (k, h)-restriction could be pretty efficient in this application: it means
reconstructing a haplotype in k parts, using only parts from h different ances-
tors. In practice we of course do not have haplotype data from the ancestors,
but from other descendants (hopefully) sharing the same ancestors.

In our experiments we used the Perlegen data set [11], which contains genotype
data for 71 ethnically diverse individuals, including 23 African American samples,
24 European American samples and 24 Han Chinese samples. The original data
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Fig. 3. (a) The number of segments needed to achieve an error rate of at most 3% for dif-
ferent haplotype fragments (x-axis) of 48 people (y-axis), picked from 3 different ethnic
groups. On average, haplotypes from the African-American group (rows 1-16 from the
top) are more difficult to predict using a segmental model than those from the European
American (rows 17-32) or Han Chinese (rows 33-48) groups. Also, there are clearly loca-
tions which are either easier (columns 1 and 10) or more difficult (columns 19 and 30) to
predict. (b) Average cost over targets as function of distance of fragment to beginning or
end of the genome. Are fragments closer to either end more difficult to predict?
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contains over 1.5 million SNPs (single nucleotide polymorphism), with an average
distance between adjacent SNPs (or markers) of 1871 base pairs. Of this we used
36 haplotype fragments of length 500 markers picked at random from 4 different
chromosomes. This means that on each of the 36 test runs our data consists of 142
binary valued haplotype segments of length 500. One haplotype at a time of a sub-
set of 48 out of the 142 was kept as the target and the rest were used as models. The
number of segments was selected so that the number of errors made in the model-
ing was at most 3%; the maximum number of segments allowed was 20. Since our
models are fixed, no cross-validation was used. The length of the fragments is so
short that not much recurrence can realistically be expected in this case. However,
it is possible to gain insight into how different ethnic populations and different lo-
cations in the genome differ in the way ancestral segments of genomes are shared.
Higher error rates imply shorter shared haplotypes and more local genomic or an-
cestral variation.

It is clear from the results, Figure 3, that haplotypes from the first group are
more difficult to model, maybe implying more ancestral variation in the group.
Also, the fragments in the beginning and the end of the haplotype seem more
difficult to predict than those further away, but the sample size is really not large
enough to draw any definite conclusions on this matter.

6 Conclusions

In this paper we considered the following problem: given a target sequence y
and a sequence of observation values X, find from a model class M a small
collection of models that can be used to explain the target phenomenon in a
piecewise fashion using the observation values.

We solved this problem by first using dynamic programming in order to find
a good segmentation of the sequence into k segments. Each segment has its
unique predictive model. We fix this segmentation, and select from the k models
associated with these segments a smaller set of h models by transforming the
problem into a k-median or a facility location problem. As a result we have a
piecewise model, consisting of a segmentation of the sequence into k segments
and a set of h models, one of which are used in each segment.

We have applied this approach to several real problems. In two of our examples
we used environmental data to solve two different prediction tasks. Our third
example described the task of constructing a target haplotype of the human
genome using segments of other haplotypes, yet another very different prediction
task. We demonstrated that when a segmental structure exists our method does
find it with reasonable efficiency.
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Abstract. Sequence classification is a significant problem that arises in
many different real-world applications. The purpose of a sequence clas-
sifier is to assign a class label to a given sequence. Also, to obtain the
pattern that characterizes the sequence is usually very useful. In this pa-
per, a technique to discover a pattern from a given sequence is presented
followed by a general novel method to classify the sequence. This method
considers mainly the dependencies among the neighbouring elements of
a sequence. In order to evaluate this method, a UNIX command envi-
ronment is presented, but the method is general enough to be applied to
other environments.

Keywords: Sequence Classification, Sequence Learning, Statistical Pat-
tern Recognition, Behavior Recognition.

1 Introduction

Sequential data mining is a broad discipline where the relationships of sequences
of elements are used to different goals in different applications. A sequence is
defined by the Merriam-Webster Dictionary as a set of elements ordered so that
they can be labelled with the positive integers. Given a set of labelled training
sequences, the main goal of a sequence classifier is to predict the class label for
an unlabelled sequence. Furthermore, many other sequence learning tasks are
considered: sequence prediction (given a set of sequences and one single sequence,
predict the next item in the single sequence), frequent subsequence discovery
(detect sub-sequences that occur frequent in a giving set of sequences), sequence
clustering (cluster a set of unlabelled sequences in subsets), etc.

In particular, this paper focuses on the challenge of sequence classification.
Let us define a sequence of n elements as E = {e1, e2,..., en}. Given a set of m
classes C = {c1, c2,..., cm} we wish to determine which class ci ∈ C the sequence
E belongs to. We present a novel method to classify a sequence.

This research is related to the framework used in the RoboCup Coach Compe-
tition. This competition of the Simulation League [1] was introduced in 2001, but
changed recently in order to emphasize opponent-modelling approaches. The main
goal of the current competition is to model the behavior of a team. A play pattern
(way of playing soccer) is activated in a test team and the coach should detect
this pattern and then, recognize the patterns followed by a team by observation.

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 207–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We [2] presented a a very successful technique to compare agents behaviors based
on learning the sequential coordinated behavior of teams. This technique was im-
plemented by us in the 2006 Coach Team Caos [3].

In this paper, a sequence classifier is presented. As a sequence can represent
an specific behavior, the classifier is evaluated in the environment of UNIX shell
commands [4] in order to learn and classify a UNIX user profile.

The rest of the paper is organized as follows. In Section 2 we provide a brief
overview of the related work on sequence classification. A summary of our ap-
proach is presented in section 3. Section 4 and 5 describe in detail the two parts
of the proposed technique: Pattern Extraction and Classification. Experimen-
tal results are given in section 6. Finally, section 7 contains future work and
concluding remarks.

2 Related Work on Sequence Classification

The main reason to need to handle sequential data is because of the observed
data from some environments are inherently sequential.

An example of these environments is the DNA sequence. Ma et al. [5] present
new techniques for bio-sequence classification. Given an unlabelled DNA se-
quence S, the goal in that research is to determine whether or not S is an
specific promoter (a gene sequence that activates transcription). Also, a tool for
DNA sequence classification is developed by Chirn et al. [6].

In the computer intrusion detection problem, Coull et al. [7] propose an algo-
rithm that uses pair-wise sequence alignment to characterize similarity between
sequences of commands. The algorithm produces an effective metric for distin-
guishing a legitimate user from a masquerader. In [8] Schonlau et al. investigate
a number of statistical approaches for detecting masqueraders.

Another important reason to research sequential data is its motivation in the
domain of user modelling. Bauer [9] present an approach towards the acquisition
of plan decompositions from logged action sequences. In addition, Bauer [10]
introduces a clustering algorithm that allows groups of similar sequences to be
discovered and used for the generation of plan libraries.

In the area of agent modelling, Kaminka et al. [11] focus on the challenge
of the unsupervised autonomous learning of the sequential behaviors of agents,
from observations of their behavior. Their technique translates observations of a
complex and continuous multi-variate world state into a time-series of recognized
atomic behaviors. These time-series are then analyzed to find sub-sequences
characterizing each agent behavior. In this same area, Riley and Veloso [12]
present an approach to do adaptation which relies on classification of the current
adversary into predefined adversary classes. This classification is implemented
in the domain of simulated robotic soccer.

In Horman and Kaminka’s work [13] a learner is presented with unlabelled
sequential data, and must discover sequential patterns that characterize the data.
Also, two popular approaches to such learning are evaluated: frequency-based
methods [14] and statistical dependence methods [4].
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3 Our Approach

In this work, the input consists of a set of sequences. A sequence is an ordered list
of elements (events, commands,...) that represents an specific behavior (pattern).
In the proposed framework, each sequence designates a class. The first part of this
classifier is to discover and store the pattern (class) followed by each sequence.
Then, a new small sequence is observed and compared to the stored patterns
(classes) in order to determine which class it belongs to.

Therefore, the proposed approach has two main phases (Figure 1 shows an
overview structure):

1. Pattern Extraction. A pattern can be defined as a compact and seman-
tically sound representation of raw data (sequence). In our approach, every
input sequence follows a different pattern, so a sequence pattern represents a
class. Every sequence is pre-processed and represented in a special structure
in order to get the pattern that it follows. This phase creates a library where
the patterns obtained from each sequence are stored.

2. Classification. Once every pattern has been stored, a given sequence must
be classified. The pattern of the given sequence is generated using the pattern
extraction process. This pattern is then matched to every pattern in the Our
Patterns Library.

Fig. 1. Overview structure

4 Pattern Extraction

A sequence is an ordered list of elements that follows a pattern and it can be
represented as {e1 → e2 → ... → en} where n is the length of the sequence.
As a pattern represents a compact and semantically sound representation of the
sequence, the first step is to extract from the sequence the elements more related
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to it. Also, a pattern should be predictable, so we consider that the repeating
elements of the sequences and its dependencies are related to the pattern.

Because of the previous supposition, in this work we propose the use of a trie
data structure [15] [16] to store the useful sequence information. Therefore, the
output of this first phase is a library in which the trie of each sequence is stored.
As a trie represents the pattern followed by a sequence, this library is called
Pattern Library.

4.1 Building a Trie

A trie (abbreviated from retrieval) is a kind of search tree similar to the data
structure commonly used for page tables in virtual memory systems. This special
search tree is used for storing strings in which there is one node for every common
prefix and the strings are stored in extra leaf nodes.

The trie data structure has been used for retrieving a string efficiently from
a set of strings; in [11] is used to learn a team behavior and in [17] to create
frequent patterns in dynamic scenes. In this research we propose to use this data
structure for a different goal: to store the main characteristics of a sequences in
an effective way. The advantage of this kind of data structure is that every
element is stored in the trie just once, in a way that each element has a number
that indicates how many times it has been inserted on.

In the proposed trie structure, every element of the sequence is represented
as a node. A path from the root to a node represents an ordered list of elements.
Also, as the length of the sequences could be very long, the sequence must be
split into smaller sub-sequences in order to store its elements in a trie. The length
of these sub-sequences can modify both the size of the tries and the final results
quite significantly.

The size of a trie depends on both the inserted and the repeated nodes. Due to
the repeated nodes can vary with the sequence to treat; to analyze the relation
between the sub-sequence length and the size of the generated trie, the number
of nodes to insert is measured. Figure 2 shows the correlation between the sub-
sequence length of a 100 elements sequence and the number of nodes (elements)
to insert in the trie. As shown in Figure 2, given a sequence of n elements, to incre-
ment in one unit the length of the sub-sequence results in inserting n/2 elements
in the trie. Therefore, the sub-sequence length is crucial in the proposed method.

Steps of Creating an Example Trie. An example of how to store a sequence
in a trie data structure is shown as follows. In this example, a sequence consists
of different words, which represent any kind of element. The sequence to insert
into an initially empty trie is:
{w5 → w1 → w5 → w1 → w5 → w3}
Firstly, this sequence must be split. Let 3 be the sub-sequence length, then

the sequence is split in two sequences:
{w5 → w1 → w5} and {w1 → w5 → w3}
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Fig. 2. Correlation between the sub-sequence length of a 100 elements sequence and
the number of elements to insert in the trie

The first sequence is added as the first branch of the trie (Figure 3 A). Each
element is labelled with the number 1 that indicates that the element has been
inserted in the node once (in Figure 3, this number is enclosed in brackets).
Because of repeating and significant sub-sequences are important to find the
sequence pattern, the suffixes of the sub-sequences are also inserted. In the ex-
ample, the suffixes {w1 → w5} and {w5} are then added to the trie (Figure 3
B). Finally, after inserting the second sub-sequence and its remaining suffix, the
complete trie is obtained (Figure 3 C).

Fig. 3. Steps of creating an example trie

4.2 Evaluating Dependencies

In order to find the pattern that characterizes the elements of the sequence
stored in a trie, two different approaches can be considered: frequency-based
methods [14] and statistical dependence methods [4]. Considering the experi-
mental results in [13], in this research, a statistical dependence method is used.
In particular, to evaluate the relation between an element and its prefix (suc-
cession of elements previous to an element), we use one of the most popular
statistic methods: the Chi-square test [18]. This statistical test enables to com-
pare observed and expected element sequences objectively and evaluate whether
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a deviation appears. Hence, every element (node) of a trie stores a value that
determines whether an element is or not relevant with the previous ones.

To compute this test, it is necessary a 2x2 contingency table (also known as
a cross-tabulation table). This table is filled with four frequency counters, as
shown in Table 1. The counters are calculated as follows: The first number O11

indicates how many times the current element (node) is following its prefix. The
number O12 indicates how many times the same prefix is followed by a different
element. The number O21 indicates how many times a different prefix of the
same length, is followed by the same element. The number O22 indicates how
many times a different prefix of the same size, is followed by a different element.

Table 1. Contingency table

Element Different element Total

Prefix O11 O12 O11 + O12

Different prefix O21 O22 O21 + O22

Total O11 + O21 O12 + O22 O11 + O12 + O21 + O22

The expected values are calculated as in Equation 1

Expected(Eij) =
(RowiTotalxColumniTotal)

GrandTotal
(1)

The formula to calculate chi-squared value, is given in equation 2.

X2 =
r∑

i=1

k∑

j=1

(Oij − Eij)
2

Eij
(2)

where: Oij is the observed frequency and Eij is the expected frequency.
This value is calculated for each element of the trie. Hence, the trie structure

obtained in section 4.1. is modified to include this value in every node.
Finally, and as result of the first phase, every created trie (that represents a

sequence pattern), is stored in the Pattern Library.

5 Classification

Given a new (and usually small) sequence to classify, the goal of this process
is to determine which pattern (from the Pattern Library) the sequence is fol-
lowing. This process compares the given sequence to every pattern stored in the
library. Therefore, the first step is to create the trie (that represents the pattern)
corresponding to the sequence to classify. This trie (which we call Testing Trie)
is generated using the process explained in section 4. This Testing Trie is then
compared to every trie of the Pattern Library. Before describing the comparing
algorithm, we should remember that every node in a trie is represented by: El-
ement (word that indicates a specific element), Prefix (set of previous elements
in the trie branch) and Chi-Sq (number that indicates the chi-square value for
the node).
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5.1 Trie Sub-comparison

If the Testing Trie and a trie from the Pattern Library (which we call Class
Trie) represent the same pattern; the recurring elements to recurring prefixes
should be similar in both tries. Accordingly, the key to compare two different
tries is to note the possibility (measured by the chi-square value, chi-sq) that an
element (e) occurs after a prefix (p) in both tries. In our method, the similarities
and differences of two tries are represented by a set of Trie sub-comparison data
structure, which can be defined as follow: Trie sub-comparison = (e, p, compar-
ison Value) where the comparison Value represents the similarity or difference
in both tries regarding the element e and its prefix p. This value is calculated
from its chi-square values.

5.2 The Comparing Algorithm

The inputs of the algorithm presented below are the two tries to be compared.
To apply this algorithm for a classifier method, it is executed once for every trie
stored in Pattern Library. The number of executions is the number of classes
(tries in library) and the two inputs are: the Testing Trie and a Class Trie.

The main points of the proposed comparing algorithm are the following:
For each node of the Testing Trie, its element and prefix are obtained. In the

Class Trie, then a node with the same element and prefix is sought:

– If the present node is only in the Testing Trie:
• It is interpreted as a difference between both tries. This difference to-

gether with the element and its prefix, are stored as part of the comparing
result in the proposed structure Trie sub-Comparison. In this structure,
the comparison Value indicates that there exists a difference between
both tries. The comparison Value is the chi-square of the present node
but its value is stored as a minus value because is representing a dif-
ference. As higher is the chi-square value, as more representative is the
difference.

– If a node with the same element and prefix is in both tries:
• The Chi-Square value of both nodes is compared: If the difference is lower

than a threshold value, it means that there is some kind of similarity
between the two tries. In this case, the comparison Value is the chi-
square of the present node but it is stored as a positive value because is
representing a similarity.

Figure 4 presents the basic structure of the proposed algorithm. The result
of the algorithm is a set of Trie Sub-Comparison (Comparison-Result) that de-
scribes the similarities and differences of both tries. In this algorithm are used
the following functions: depthTrie(Trie T): returns the maximum depth of any
of the leaves of the trie T. getSetOfNodes(Level L, Trie T ): returns a set nodes of
the trie T in the level L. getNode (Element E, Prefix P, SetOfNodes S): returns
a node (from the set of nodes S ) consisting of the element E and which prefix
is P. (If a node with these parameters does not exist in S, the function returns



214 J.A. Iglesias, A. Ledezma, and A. Sanchis

Algorithm 1. CompareSimilarityTries (TestingTrie, ClassTrie)
for leveli ← 2 to depthTrie (TestingTrie) do

sett ← getSetOfNodes(leveli, TestingTrie)
setc ← getSetOfNodes(leveli, ClassTrie)
for all nodet in sett do

nodec ← getNode (element(nodet), prefix(nodet), setc)
if (nodec == null) {the node is only in the Testing Trie}

Trie-sub-Comparison ← Add(element(nodet), prefix(nodet), chi-sq (nodet)*-1)
Comparison Result ← Add(Trie-sub-Comparison)

else {The node is in both tries}
if (abs(chi-sq(nodet) - chi-sq (nodec)) ≤ ThresholdValue)

Trie-sub-Comparison ← Add(element(nodet), prefix (nodet), chi-sq (nodet))
Comparison-Result ← Add(Trie-sub-Comparison)

end if
end for

end for

Fig. 4. Basic Structure of the Comparing Algorithm of two tries

null). Finally, element(node N), prefix(node N) and chi-sq(node N): return the
element, prefix and chi-square of the node N, respectively.

Once the Testing Trie has been compared with every Class Trie; we add
up the comparison Value for every Trie Sub-Comparison obtaining an amount
for each Class Trie. This amount represents the similarity between the given
sequence and the class. Therefore, the result of the classifier is the Class Trie
with a higher value (positive values represent similarity).

6 Experimental Setups and Results

In order to evaluate the proposed method, we have fully implemented a system
that classifies UNIX command line sequences. In this environment, we extract
the profile of a user from its UNIX commands sequences and then we classify
a given sequence in one of the user profile previously stored. This task is very
useful in computer intrusion detection.

We used 9 sets of sanitized user data drawn from the command histories of
8 UNIX computer users at Purdue University over 2 years [19]. The data is
drawn from tcsh history files and has been parsed and sanitized to remove file-
names, user names, directory structures, etc. Command names, flags, and shell
metacharacters have been preserved. Additionally, tokens have been inserted to
divide different user sessions. Also, and it is very important in our research, to-
kens appear order issued within the shell session, but no timestamps are included
in the data.

For evaluating the proposed method, we have used the benchmark data sets
from [19]. Each input file contains from about 10.000 to 60.000 commands.
Firstly, for each user is created a trie (user profile library) that represents its
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Fig. 5. Comparing Results. Unix Commands Classification - User 6.

Fig. 6. Length necessary to classify a UNIX computer user correctly

behavior. As we explained in section 4, the length of the sub-sequences can
modify both the size of the tries and the final results quite significantly, so
we have executed our method with different sub-sequences length in order to
evaluate the results.

Once tries of different sizes have been built for each user, we conducted exten-
sive experiments. To evaluate our method we use the user profile library (set of
classes) and a given sequence to be classified (this sequence is labelled because it
is obtained from a user file). As we want to recognize a user as soon as possible,
we classify sequences of very different sizes. After using the proposed technique,
a comparing value is obtained for each user profile (class value). From these
results, the given sequence is classified in the class with the highest value.

In order to evaluate the result and represent them graphically, for each given
sequence we calculate a result value. This value represents the difference between
the value obtained for the given sequence class and the highest class value:

– If the obtained value is negative, it means that there is another class consid-
ered by our method more similar to the given sequence (our classification is
wrong).
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– If the value is zero, the classification is right. Also, to evaluate the correctness
of the result and the efficiency of the algorithm, the following value is cal-
culated: difference between the obtained value and the second highest value.
Therefore, as higher is this calculated value, as better is the classification.

Figure 5 shows the results for a sequence obtained from the user 6 commands
file. The X-axis represents the given sequence length. The Y-axis represents
the calculated value to evaluate our method. In the graph, three different sub-
sequence lengths (3, 6 and 10) are represented. Because of the result of the
method can depend on the given sequence, each point represented in the graph
is the average value of 25 different tests conducted. As we can see, the best result
is obtained using long sub-sequences. However, the size of the trie and the time
consuming to build the trie and classify the sequence are highly increased with
the length of the sub-sequences.

Because of lack of space, we have omitted the graphs that represent the result
for the other 8 users. However, these results are also successful and the repre-
sentative values are similar. Considering the results, we obtain: Let 6 be the
sub-sequence length, then this method is able to correctly classify every given
sequence of more than 15 commands.

Figure 6 represents the length of the given sequence necessary to classify
correctly one of the 9 evaluated users. Considering a sub-sequence length of 3,
the classification is not usually correct after even 50 commands. Only two users
(3 and 8) are correctly classified with this size.

7 Conclusions and Future Work

In Horman and Kaminka’s work [13] a learner to discover sequential patterns
is presented. Also, to overcome the length bias obstacle, they normalize can-
didate pattern ranks based on their length. To improve the results in our re-
search, a normalization method for comparing tries of different lengths could be
implemented.

Previous to this research, we have developed a method for comparing agents
behavior. The method was based on learning the sequential coordinated be-
havior of teams. The result of that method was successfully evaluated in the
RoboCup Coach Competition. Related to that research, in this paper a sequence
classification using statistical pattern recognition is presented. This method con-
sists of two different phases: Pattern extraction and Classification. The goal of
the first phase (in which previous works have been considered) is to extract a
pattern or behavior from a sequence. The extracted pattern is represented in a
special structure: trie. The second phase presents a method to compare different
patterns (tries) in order to classify a given sequence.

In order to evaluate the proposed technique in a specific environment, we
focus our experiments on the task of classify UNIX command line sequences.
The technique was evaluated in a rigorous set of experiments and the results
demonstrate that it is very effective in such tasks.
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On the other hand, other approaches have been applied in the environment
presented in this paper (UNIX shell commands): using Hidden Markov Models
(HMMs) [20] [21] or employing instance-based learning (IBL) [20]. However, the
goals to achieve by these methods differ from our proposal. A detailed analysis
confronting our approach with others is proposed as future work.
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Abstract. The quality of single classification rules for numerical data can be 
evaluated by different measures. Common measures are the frequency and the 
confidence of rules beside others. A problem with these measures is that they 
are valid for a rule only if an uniform distribution of the data, corresponding to 
the rule, is assumed. Since this is usually not the case, especially when 
considering high dimensional data, subrules and their properties should be 
considered additionally. The frequency and the confidence values of the 
subrules, summarized in a diagram, give more information about the quality of 
the rules than the properties of the rules solely.  

Keywords: Rules, subrules, frequency, confidence. 

1   Introduction 

Rules for numerical data are usually described by interval conditions. For each 
dimension i a condition Ci is formulated in the format: xi ∈ [ai, bi], xi, ai, bi ∈ IR, i = 1, 
…, k. The rule R is then formulated as: ‘if C1 and C2 and … and Ck then P’ with a 
property P for the data like a class label for example. In this common case the 
conditions of a rule R correspond to a rectangle R = [a1, b1] × [a2, b2] × … × [ak-1, bk-1] 
× [ak, bk]. Modifications are closed or open intervals or infinite intervals. Less than k 
conditions can be considered in order to omit irrelevant dimensions. For an 
introduction to rules and related topics see [1], [2] for example. If a specific precision 
of the data should be considered, like one decimal after comma, the numbers xi, ai, bi 
are elements of an exact space IIR, where only such numbers are allowed [3]. More 
general other parametrized geometric figures than rectangles could be considered like 
ellipses or triangles, although in the literature the term rule is used in connection with 
rectangles. However, for our considerations it makes no difference what kind of these 
numerical rules is considered. 

Usually, one is interested in a property P of a rule R or R. Important values for 
rating the quality or the interestingness of a rule are its frequency freq(R) and its 
confidence conf(R). The frequency is the proportion of the data, that are elements of 
R, related to the number of all the data samples in the dataset D, i.e., |R| / |D|. The 
confidence is defined as the proportion of the elements in R that fulfill the property P, 
related to all the samples in R, i.e., |P(R)| / |R|. In the case that no elements are located 
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in R the confidence is not defined. Commonly, the values are multiplied by 100 in 
order to have percentages. These measures were originally defined for association 
rule learning with symbolic data [4]. Although there are relations between symbolic 
and numerical data analysis for classification, we concentrate on numerical data 
analysis in this contribution. For further reading on association rules refer to [5] for 
example.  

Although such measures like frequency and confidence can be defined for a rule R 
formally , they are statistically valid or useful only if an uniform distribution of the 
data is assumed. Otherwise, different regions S ⊂ R might have significantly different 
frequency or confidence values, so that freq(R) and especially conf(R) is not a useful 
characterization of R and what is worse, the values are misleading. Numerical rule 
learners are often based on heuristics to reduce run time complexity, and the 
generation of inhomogeneous rules is not explicitly forbidden, e.g. [6] (decision 
trees), [7] (support cuts of fuzzy rules), [8] (rules from data streams). In the next 
section we discuss several examples where the values of a rule R give not a satisfying 
characterization of it. 

For a better description of a (rectangular) rule all subrules, i.e., all (rectangular) 
subregions, S ⊂ R, need to be considered with their values. For IR this would be an 
infinite number of rules, and even for an exact space IIR the number would be high 
due to combinatorial explosion. In Section 2 we propose the random generation of 
subrules Sj in order to obtain pairs (freq(Sj), conf(Sj)). These pairs are noted in a 
diagram, that allows for a more meaningful view on the rule R. Some examples of 
such diagrams and their interpretation are given in Section 3. 

 

R

R3 

R2 

R1 

 

Fig. 1. A rule R and three subrules R1, R2, and R3. With respect to the property P = ‘the class of 
the sample is black,’ the confidence of the rules is equal. It is conf(R) = conf(R1) = conf(R2) = 
conf(R3) = 66.67%. 

2   Problems with Rule Quality Measures and Subrules 

Two numerical rules can be compared by rule quality measures, whether they have 
been generated by one method or by two different ones. In Fig. 1 a rule R is depicted 
with conf(R) = 66.67% (rounded to two decimals). Without loss of generality its 
frequency is assumed to be 100% (33 samples), but could be any other value as well.  
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S

S3 

S2 

S1 

 

Fig. 2. A rule S and three subrules S1, S2, and S3. With respect to the property P = ‘the class of 
the sample is black,’ the confidence of the rules is conf(S) = 66.67%, conf(S1)  not defined, 
conf(S2) = 80.00%, and conf(S3) = 30.00%. 

V

U 

 

Fig. 3.  Rules U and V, both with a higher confidence for class black. In the overlapping region 
only samples of class white are located. 

100% 

0% 

100%0% 
freq 

conf 

(freq(Ri), conf(Ri))

 

Fig. 4. In the ideal case for all frequencies > 0% of subrules Ri the confidence remains the same 
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The subrules R1, R2, and R3 have the same confidence with frequency freq(R1) = 
freq(R2) = 9.09% and freq(R3) = 27.27%. In this more homogeneous rule the 
prediction of a new sample as being black can be assumed to be actually about 
66.67%. In Fig. 2 the rule S has the same frequency and confidence values as the rule 
R in Fig. 1. But the subrules have different values: freq(S1) = 0.00%, freq(S2) = 
15.15%, freq(S3) = 30.30%, conf(S1) not defined, conf(S2) = 80.00%, and conf(S3) = 
30.00%. For a new sample it is a vague hypothesis to state that it is of class ‘black’ 
with a probability of 0.67. This is due to the non-uniformity of the rule S, what is not 
expressed in the frequency and confidence values. Compared to rule R, the rule 
quality of S is intuitively lower. Since high dimensional data is likely to tend to more 
extreme distributions with empty regions, the rules should be analysed more carefully. 

100% 

0% 

100%0% 
freq 

conf 

(freq(Ri), conf(Ri)) 

ideal case

m% 

good 
rule 

bad 
rule 

 

Fig. 5. The characteristic areas of the frequency-confidence pairs that appear for good rules 
(area limited by solid lines, case A) and bad rules (area limited by dotted lines, case B). The 
pairs are elements of the area including the borders. The m% is the frequency for one sample. 
Empty subrules can be marked formally as (0%,0%). 

The following problems are a consequence of inhomogeneous rules: less 
interpretability, random classification of unknown data, wrong decisions with 
overlapping rules. In Fig. 1 the rule R can be clearly interpreted as a rule, that mainly 
represents samples of class black. Wherever a new, unknown sample is located in the 
rule R, it can be classified as being black. Using the rule S in Fig. 2 it depends on the 
location of the sample in S how it should be classified in the best way. If the sample is 
located in S1 ⊂ S, then it might be a better choice to classify the sample as ‘unknown,’ 
since the properties of the rule S are not based on data located in the subregion S1. If 
the overlapping of two inhomogeneous rules is used for a class decision, then the 
decisions could be wrong. In Fig. 3 two inhomogeneous rules are depicted, both with 
a higher confidence for class black than for class white. Although one would 
intuitively assume, that in the overlapping region the decision of a sample as being 
black is supported by the two rules, this assumption is wrong due to the 
inhomogeneity of the rules. In fact, in the overlapping region all samples are white. 

We propose the random generation of subrules in order to check the homogeneity 
or uniformity of a rule. The frequency and confidence values are depicted in a 



 Subrule Analysis and the Frequency-Confidence Diagram 223 

diagram with an additional counter for empty regions. In Fig. 4 the ideal case is 
depicted, where the data is uniformly distributed and where all the samples are 
available with an infinite precision. In Fig. 5 (case A) a case is depicted where the 
data is almost uniformly distributed, and where the samples are available with a pre-
defined finite precision. Of course, if the intervals of the subrule would become 
smaller than the precision, then empty subrules are generated. This is not a problem of 
the rule itself. If the rules are very small with respect to the precision, it is possible 
that only one sample is element of a subrule, resulting in 0,00% or 100,00% 
confidence. In Fig. 5 (case B) the worst case is depicted, where even large subrules 
have already very different confidence values. It is clear that no positive frequency 
can be lower than the frequency m% of a rule with a single sample. The empty 
subrules can be counted formally as (0%,0%)-pairs. Good rules should have less 
empty subrules than bad rules. The prediction of samples, that are located mostly in 
empty subrules, is less significant than of those, that are located mostly in confident 
subrules. 

To quantify the homogeneity with the frequency-confidence diagram we define 
firstly the (formal) fc-area. 
 
Definition 1 
Let there be a dataset D and a rule R with corresponding region R. Generate the set 
Rsub of all r subrules {R1,…,Rr}. For every subrule out of Rsub calculate the frequency 
and confidence. The area a(R), that includes all frequency-confidence pairs, is normed 
by the area a(H), H = [m%, 100%] × [0%, 100%], so that a(R) ∈ [0, 1]. The (normed) 
area a(R) is called the (formal) fc-area of R. 
 
In the ideal case the fc-area of a rule is 0. For a homogeneous rule it is nearer to 0 
than to 1. For an inhomogeneous rule it is clearly greater than 0. If real numbers are 
allowed, the number of subrules is infinite. Even with a discrete number of possible 
values in each dimension, the number of subrules is combinatorially exploding. 
Subsequently, Definition 1 is only useful for theoretical considerations or on rule 
examples with low complexity. The combinatorial explosion of subrules leads to the 
situation that many randomly generated subrules are empty, i.e., the frequency of the 
subrules is 0. Let us consider the Cancer dataset for example [9]. In each dimension 
the minimum and maximum values are 0.1 and 1.0, respectively. The appearing 
numbers in the Cancer dataset are {0.1, 0.2, 0.3, …, 0.8, 0.9, 1.0} only. With 9 
dimensions the Cancer data space SCancer could theoretically contain 109 elements. In 
fact it only has 699 samples, what is 6.99 ⋅10−5% of SCancer. The rule C, defined in 
Section 3, covers theoretically 75264000 samples, and actually 134 samples 
(1.78⋅10−4%). So it is not useful to generate a very high number of mostly empty 
subrules what is due to the small percentages of actually covered positions with 
respect to the theoretically possible ones. 

A first idea was to allow only the generation of subrules with a certain percentage 
of volume in each dimension. But even with high percentages > 90% the randomly 
generated subrules remained mostly empty with no significant frequency-confidence 
diagram. It turned out that the restriction to subrules is useful, that remain equal in all 
dimensions with the exception of one randomly selected dimension. We will see in  
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input: rule R
output: fc-area a(R)

calculate (freq(R),conf(R)) on the data;
calculate the minimum frequency m on the data;
generate s subrules Sj of R by generating randomly a subinterval …

… in one dimension;
for all subrules Sj do
calculate (freq(Sj),conf(Sj)) on the data;
% (only a check of the data in R is necessary, the other data is not in Sj)
end
P := {(freq(Sj),conf(Sj))}j=1,…,s;
Q := P {(freq(R),conf(R)),(m,0),(m,100)};
determine estimated, dimensionally restricted, normed fc-area a(R) …

… as approximative integral area a(Q)/a(H);  

Fig. 6. Calculation of the fc-area of a rule R 

Section 3 that subrules lead to significant frequency-confidence diagrams, when the 
subrule property is considered in each dimension. To be correct, we modify 
Definition 1 slightly. 
 
Definition 1’ 
Let there be a dataset D and a rule R with corresponding region R. Generate a set Rsub 
of s subrules {R1,…,Rs}, where only in one dimension a subinterval is considered for 
each subrule. The number s of subrules should be chosen large enough, so that the 
estimation of the fc-area becomes stable. For every subrule out of Rsub calculate the 
frequency and confidence. The normed area a(R), that includes all frequency-
confidence pairs, is called the (estimated, dimensionally restricted) fc-area of R. 

100% 

0% 

100%0% 
freq 

conf 

(freq(Ri), conf(Ri))

m% 

estimated 
fc-area

 

Fig. 7.  The frequency-confidence pairs are linearly interpolated. The area of the resulting 
trapezoids is summed up to the estimated (unnormalized) fc-area. 
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To avoid a high statistical bias due to the chosen number s of subrules, a set of 
increasing numbers can be used for the estimation of the fc-area. If the further 
increasing of s does not lead to a significantly different fc-area, then s is a suitable 
parameter. In Fig. 6 we summarize the practical subrule analysis with the estimated, 
dimensionally restricted fc-area. 

The approximative integration can be done by calculating the area of the piecewise 
linearly interpolated points in Q, differentiating the points with higher and lower 
values than conf(R), cf. Fig. 7. We remark that this area is not the same as the area of 
the convex hull of Q, that is not used here, because the set Q is not convex.  

In ROC analysis a diagram is plotted with specifity and sensitivity pairs of a 
classifier [10]. The area under the ROC curve (AUC) is a performance measure for a 
classifier, a set of rules for example. The fc-area measures the homogeneity of a single 
rule. While AUC can measure the classification accuracy of any classifier, with the fc-
area tolerances of the statistical properties of a rule are quantified. 

3   Examples on Real World Datasets 

In this section the (estimated, dimensionally restricted) fc-areas of two rules are 
determined for the datasets Diabetes (2, 8, 768) and Cancer (2, 9, 699) [9], 
respectively. In brackets the number of classes, the dimensionality, and the number of 
samples is noted. For our experiments we use rules that we have generated earlier. We 
utilized s = 1000 randomly generated subrules for every rule. For the Cancer dataset 
the following rule C is analysed as an example: 
 
C) if var 1 ∈ [0.50, 1.00] and var 2 ∈ [0.40, 1.00] and var 3 ∈ [0.30, 1.00] and var 4 
∈ [0.10, 1.00] and var 5 ∈ [0.20, 0.80] and var 6 ∈ [0.10, 1.00] and var 7 ∈ [0.30, 
1.00] and var 8 ∈ [0.10, 1.00] and var 9 ∈ [0.10, 0.40] then class 1 with freq = 
19.2% and conf = 94.0%. 

 

Fig. 8. Frequency-confidence diagram for the rule C 
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In Fig. 8 the frequency-confidence diagram for rule C is depicted. There are subrules 
with a frequency less than 6% that have 100% confidence. There is a variety of 
subrules with a frequency of 0% to 16% with a confidence of 60% to 100%. The 
(normed) fc-area is about 0.06. A number of 159 subrules out of 1000 have a 
frequency equal to 0. Due to the low fc-area the rule C can be considered as a good 
rule. The rule D for the Diabetes dataset is as follows: 
 
D) if var 1 ∈ [3.00, 10.00] and var 2 ∈ [84.00, 165.00] and var 3 ∈ [0.00, 72.00] and 
var 4 ∈ [0.00, 32.00] and var 5 ∈ [0.00, 168.00] and var 6 ∈ [0.00, 37.20] and var 7 
∈ [0.09, 0.63] and var 8 ∈ [22.00, 55.00] then class 1 with freq = 10.9% and conf = 
71.4%. 
 
The frequency-confidence diagram for rule D is depicted in Fig. 9. With 142 out of 
1000 rules being empty, the fc-area is about 0.18. With lower frequencies we notice a 
larger spread of confidence values from 20% to 100%. In Fig. 9 all frequency-
confidence pairs with subintervals in the first dimension are marked with a circle 
instead of a cross. These pairs are distributed like the others. The same holds for the 
other dimensions. Overall, no specific irregularities can be noticed for any dimension. 

 

Fig. 9. Frequency-confidence diagram for the rule D. The pairs stemming from subrules with 
subintervals in the first dimension are marked with a circle instead of a cross. 

Another visualization could be made for fuzzy rules, where the subrules between 
the core region and the support region for specific cuts between 0 and 1 can be 
highlighted. This is not considered here in detail, but the pair corresponding to the 
core region is more likely located in the upper left corner, and the pair corresponding 
to the support region is located on the right side. 
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4   Conclusion 

In this contribution we have demonstrated the drawbacks of two common rule 
measures. Since an uniform distribution of the data is usually not present, the rule 
measures are not representative for the whole rule region. Although they should state 
more precisely the properties of a rule, they might even be misleading without any 
further analysis. A deeper analysis can be performed by the consideration of subrules. 
The frequency and confidence values of subrules can be depicted in a diagram, that 
summarizes the properties of a rule more accurately. It can be seen as a homogeneity 
property of a rule. If all or a representative number of subrules have similar 
properties, then the rule R is homogeneous and it is a good rule from this viewpoint. 
If the subrules have very different values, than it is better not to consider R as a good 
rule. In this case the rule R would be too inhomogeneous to allow for accurate 
predictions. A split of R in different subrules might then lead to more accurate rules. 
It was discussed that inhomogeneous rules are less interpretable, less suitable as part 
of classifiers, and less accurate with regard to unknown data. Especially when errors 
are costly, a subrule analysis can prevent for undesired costs. Since a formal subrule 
analysis is computationally costly itself, we restricted a practicable analysis to 
dimensionally restricted subrules with a frequency-confidence diagram as 
visualization. The fc-area helps to decide whether the statistical properties frequency 
and confidence are valid properties of the rule or not. 

Further work could be concerned with the optimization of the geometric shape of a 
rule R and its subrules with respect to the frequency-confidence diagram. A 
comparison of complete rule sets of different rule classifiers by a subrule analysis can 
be done. 
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Abstract. We present an algorithm for causal structure discovery suited
in the presence of continuous variables. We test a version based on partial
correlation that is able to recover the structure of a recursive linear
equations model and compare it to the well-known PC algorithm on
large networks. PC is generally outperformed in run time and number of
structural errors.

1 Introduction

Detecting causation from observational data alone has long been a controversial
issue. It is not before the pioneering work of Pearl and Verma [1] and Spirtes
et al. [2] that causal discovery was formalized theoretically and linked with a
graphical representation: directed acyclic graphs (DAGs).

PC,1 the reference causal discovery algorithm, is based on conditional indepen-
dence (CI) tests. While such a test can be implemented efficiently with discrete
variables, it is not generalizable to the continuous case straightforwardly. With
the assumption that variables are jointly distributed according to a multivariate
Gaussian, we know that a test for zero partial correlation2 is equivalent to a
CI test [3]. In this paper, we present an algorithm based on partial correlation
that is faster and makes fewer errors than PC on datasets with more than a few
hundred samples.

In section 2, we review principles of causal discovery, pose the problem, and
mention related work. We then present the algorithm in section 3 and analyze
its complexity. Experimental results are shown and discussed in section 4. We
conclude in section 5 and include proofs and definitions in appendix A.

1 “PC” stands for “Peter” and “Clark” after the inventors of the method [2].
2 Definition in appendix A.
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2 Background and Problem Statement

The search for the true causal structure underlying some data set is of paramount
importance when the effect actions rather than predictions are to be returned.
By focusing on predictions only, a system cannot address problems where some
parts of the data distribution process is changed. Causality analysis is a mean to
address these nonstationary problems by computing the mechanism generating
the data and by assessing the effect of some changes in that mechanism. The
first step to a causal analysis is the definition of the causal structure represented
as a DAG. In general, this problem is impossible to solve with observational
data only. Causal structures can be retrieved only up to some equivalence class:
besides (undirected) adjacencies, only colliders, i.e., triples of variables where
one is a common effet of two causes, can be specified exactly.

There are mainly two classes of causal discovery algorithms: score-based and
constrained-based. In this paper, we are concerned with the second type only.
PC is a typical constraint-based algorithm. We present its high-level description,
also known as the IC algorithm [1]:

1. For each variable pair (X, Y ) in the set of variables V, look for a set SXY such
that X and Y are conditionally independent given SXY : (X ⊥⊥ Y | SXY );3

add an edge between X and Y if no such set can be found;
2. For each pair (X, Y ) with a common neighbor Z, turn the triple into a

V-structure X → Z ← Y if Z ∈ SXY ;
3. Propagate the arrow orientation to preserve acyclicity without introducing

new V-structures.

Because of the subset search in Step 1, PC and IC have an exponential time
complexity in the worst case.

Current causal discovery algorithms assume that the underlying causal struc-
ture is a Bayesian network (with discrete variables), i.e., that the dataset is
DAG-isomorphic [4]. Extensions have been developed for the case of continuous
variables when the underlying causal structure is a linear structural equation
model (SEM). In SEMs, we describe each variable xi = fi(pai, ui) as a function
of its parents and a random disturbance term. When the corresponding graph
is acyclic, the SEM is said to be recursive.

In this paper, we focus on SEMs and on continuous variables, frequent in
econometrics, social sciences, and health care, for instance. Focusing on SEMs
rather than Bayesian networks avoids the computational difficulties of handling
continuous conditional probability distributions. But one of the main challenges
to solve is to find a convincing statistical test of CI for continuous variables. To
simplify our task, we solve the simpler case of a linear recursive SEM, where each
functional equation is of the form xi = 〈wi,pai〉+ ui. Imposing a Gaussian dis-
tribution on the disturbance terms ui yields a multivariate Gaussian distribution
over V, and a partial correlation ρXY ·Z will be zero if and only if (X ⊥⊥ Y | Z)

3 We have (X ⊥⊥ Y | Z ) ⇐⇒ P (X = x |Z = z) = P (X = x | Y = y, Z = z).
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holds. Thus, testing for zero partial correlation is a valid conditional indepen-
dence test for continuous variables in a linear recursive SEM with uncorrelated
Gaussian disturbance terms.

Related Work. Partial correlation has been used extensively in econometrics and
social sciences in path analysis with relatively small models (e.g., [5]). In causal
discovery, it has only been used (as transformed by Fisher’s z, see [6,7]) as a
continuous replacement for CI tests designed for discrete variables and assuming
a small conditioning set size.

Causal graph construction, especially if considered as determination of the
Markov blanket of each variable, can be assimilated to a feature selection task for
each node. Other causal algorithms performing a search to retrieve the Markov
blanket of single variables include MMMB [8] and HITON MB [9]. These papers
also discuss the link to feature selection. But to the best of our knowledge, none
of them has been extended and applied to fully-continuous datasets.

Other approaches to learning the structure of causal or Bayesian networks
with continuous variables without first discretizing them include using a CI
test from Margaritis [10]. This test, however, is very computationally expen-
sive, which limits its use even for medium-sized problems. Work has also been
done in score-based approaches for learning with continuous [11] and mixed [12]
variables and integrating expert knowledge in the form of priors, but they do
not provide a theoretical proof that the obtained graph is a perfect map of the
dataset.

3 Total Conditioning for Causal Discovery

Whereas PC removes edges from a full graph as CI is found, our Total Condi-
tioning (TC) method starts with an empty graph and adds edges between two
nodes when conditioning on all the others does not break any causal dependency.

1. For each pair (X, Y ), add an edge X−Y if the partial correlation ρXY ·V\{X,Y }
does not vanish. We obtain the moral graph of G0, i.e., an undirected copy of
G0 where all parents of the colliders are pairwise linked;

2. Remove spurious links between parents of colliders introduced in Step 1 and
identify V-structures;

3. Propagate constraints to obtain maximally oriented graph (completed
PDAG).

Partial correlations in Step 1 can be computed efficiently by inverting the corre-
lation matrix R. With R−1 = (rij), we have: ρXiXj ·V\{Xi,Xj} = −rij/

√
riirjj .

In terms of Gaussian Markov random fields (a special case of undirected graph-
ical models), Step 1 constructs the correct graph by adding edges where the total
partial correlation is significantly different from zero (see, e.g., [13]). In the case
of the DAG-isomorphic problems we handle, Step 1 builds the correct structure
up to moral graph equivalence: it will actually build the correct undirected links
and marry all parents. This means that every original V-structure will be turned
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into a triangle pattern. Step 3 is common to several algorithms constructing the
network structure under CI constraints [1,2]. Step 2 is a local search looking for
orientation possibilities. To explain it, we need the following definition.

Definition 1. In an undirected graph G = (V,E), let Tri(X−Y ) (with X, Y ∈
V and (X, Y ) ∈ E) be the set of vertices forming a triangle with X and Y .
Suppose that G is the moral graph of the DAG representing the causal structure
of some DAG-isomorphic dataset. A set of vertices Z ⊂ Tri(X − Y ) then has
the Collider Set property for the pair (X, Y ) if it is the largest set that fulfills

∃SXY ⊂ V \ {X, Y } \ Z : (X ⊥⊥ Y | SXY ) (1)
and ∀Zi ∈ Z : (X 
⊥⊥ Y | SXY ∪ Zi ) . (2)

Step 2 looks at each edge that is part of some triangle and determines if it is
spurious due to a V-structure effect. This is exactly the case when two variables
X, Y in a triangle X, Y, Z can be made conditionally independent by a set that
does not contain Z. A search is then performed for each of those edges to de-
termine a set Z ⊂ Tri(X − Y ) that has the Collider Set property, using a small
search space for SXY and Z as allowed by the result of Step 1. If this search is
successful, the edge X − Y is removed and the detected V-structures properly
oriented for each collider. Practically, the search for SXY can be restricted to a
subset of the union of the Markov blankets for X and Y , and the search for Z is
restricted by definition to Tri(X − Y ), which make both tasks tractable, unless
the graph has a high connectedness.

Algorithm 1. The Total Conditioning algorithm
Input: D : p × n dataset with p n-dimensional data points
Output: G : maximally oriented partially directed acyclic graph

1: G ← empty graph with n nodes
2: for each unordered pair X, Y do
3: if ρXY ·V\{X,Y } does not vanish then add link Y − X to G
4: end for
5: for each edge X − Y part of a fully-connected triangle do
6: if ∃Z ⊂ Tri(X − Y ) that satisfies the Collider Set property then
7: remove link X − Y from G
8: for each Zi ∈ Z do orient edges as X → Zi ← Y
9: end if

10: end for
11: perform constraint propagation on G to obtain completed PDAG
12: return G

Complexity Analysis Step 1 has a complexity of O(n3), which comes from the
matrix inversion needed to compute the partial correlations. Step 2 has a com-
plexity O(n22α), where α = maxX,Y |Tri(X − Y )| − 1. Step 3 is O(n3). The
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overall complexity is then O(n3 + n22α), depending on the value of α as de-
termined by the structure of the graph to be recovered. In the worst case of a
fully-connected graph, it is, like PC, exponential in the number of variables.

After removal of the spurious links and the usual constraint propagation [1,2],
the returned graph is the maximally-oriented PDAG of the Markov equivalence
class of the generating DAG G0.

In the appendix, we prove the correctness of TC; i.e., we show that in the
large-sample limit and with reliable statistical tests, TC converges to the actual
perfect map of the dataset to be analyzed, up to its equivalence class.

Significance Tests. A particularly delicate point in this algorithm is the statisti-
cal test deciding whether a partial correlation is significantly different from zero.
In a network of n nodes, Step 1 performs n(n − 1)/2 tests for determining the
undirected skeleton. On average, we will then falsely reject the null hypothesis
ρ = 0 about αn(n − 1)/2 times, and thus include as many wrong edges in the
graph. We then set the significance level for the individual tests to be inversely
proportional to n(n − 1)/2 to avoid this problem, without noticing an increase
in the Type II error rate experimentally. The PC algorithm does not suffer from
this issue because of the detailed way of repeatedly testing for edge existence
with increasing conditioning set cardinality.

In practice, we replaced the more traditional Fisher approximate z-transform
of the sample correlation by t-tests on the beta weights of the corresponding
linear regression equations, whose distributions are known to be Gaussian with
zero mean under the null hypothesis ρ = 0 (see, e.g., [14], p. 243).

4 Experimental Results

The performance of the TC algorithm was evaluated against the PC algorithm
[2] where CI tests were replaced by zero partial correlation tests. We were un-
able to compare it to newer algorithms like SCA [15] or MMHC [16] because
generalizing them to handle continuous variables require techniques that are too
computationally expensive. We used the following networks (from the Bayes net
repository):

– Alarm, 37 nodes, 46 arcs, 4 undirected in the PDAG of the equivalence
class. It was originally designed to help interpret monitoring data to alert
anesthesiologists to various situations in the operating room.

– Hailfinder, 56 nodes, 66 arcs, 17 undirected in its PDAG. It is a normative
system that forecasts severe summer hail in northeastern Colorado.

– A subset of Diabetes, with 104 nodes, 149 arcs, 8 undirected in its PDAG,
which was designed as a preliminary model for insulin dose adjustment.

The graphs were used as a structure for a linear SEM. The parentless vari-
ables were sampled as Gaussians with zero mean and unit standard deviation;
the other variables were defined as a linear combination of their parents with co-
efficient randomly distributed uniformly between 0.1 and 0.9, similarly to what
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was done in [6]. The disturbance terms were also normally distributed. We used
the implementation of PC proposed in the BNT Structure Learning Matlab
package [17], where we set the statistical significance of the tests to α = 0.05.
The implementation of TC was also done in Matlab; all experiments were run
on a 2 GHz machine.

Fig. 1 (a) shows the training errors for PC and TC against the number of
samples for Alarm. For each sample size, 9 datasets were drawn from the model;
the error bars picture the standard deviation over these 9 runs. Starting at
about 150 samples, TC outperforms PC. It introduces at most one unnecessary
arc and misses between 0 and 3. On average, TC was about 20 times faster than
the implementation of PC we used, although the factor tended to decrease with
larger sample sizes; see Fig. 1 (b).

The results for Hailfinder are shown in Fig. 2. The results for PC are sparser
than for TC, because of its long run times. In order to speed it up, we set the
maximum node fan-in parameter to 6, so that PC would not attempt to conduct
CI tests with conditioning sets larger than 6. For large datasets, we could run
PC only once, so that we have little information on the variance of its results
for this network, but even if we average the five last PC results for between 550
and 10000 samples, TC does better for each of its runs on this range. PC still
beats TC on sample sizes smaller than 200. We also see on Fig. 2 (b) how the
fan-in parameter imposed an upper bound on the run times of PC.

Fig. 3 shows errors and run times for Diabetes (note that the sample size starts
from 200, because in the case where we have fewer samples than the number of
variables, TC would have to inverse a matrix that does not have full rank).
Again, PC does better at first, and starting at 500 samples, it is outperformed
in accuracy. The difference of the number of errors stabilizes around 5 or 6. Our
run times are still significantly shorter.

Finally, Fig. 4 shows the results of an experiment where we took the first n
nodes of Diabetes for a fixed sample size of 1000 in order to show the response
of the algorithms to an increasing number of variables in networks of similar
structure. Results show that PC makes 1 to 2 mistakes fewer on the smaller
networks but is outperformed for n > 50 on this particular instance. Although
the run times of PC are still significantly higher, rescaling the plots shows that
the increase of n increases the run times of both algorithms by a very similar
factor for all tested graph sizes.

Discussion. TC consistently beats PC when the sample size gets larger, and does
so in a small fraction of the time needed by PC. In particular, PC is slowed down
by nodes with a high degree, whereas TC handles them without the exponential
time complexity growth if they are not part of triangles, as in Hailfinder. In
general, TC resolves all CI relations (up to married parents) in O(n3) in Step
1, whereas all PC can do in O(n3) is resolve CI relations with conditioning sets
of cardinality 1. It is then reasonable to expect TC to scale better than PC on
sparse networks where nodes have a small number of parents.

PC could not be beaten on small sample sizes. It is yet an unsolved challenge
for TC to handle problems where the number of variables exceeds the number of
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Fig. 1. Alarm: (a) structural errors and (b) run times as a function of sample size
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Fig. 2. Hailfinder: (a) structural errors and (b) run times as a function of sample size
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Fig. 3. Diabetes: (a) structural errors and (b) run times as a function of sample size

samples, as in gene expression networks, thus leading to an attempt at inverting
a matrix that does not have full rank. Regularizing the covariance matrix might
help make TC more robust in this case. PC and TC are complementary in the
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Fig. 4. Diabetes: (a) structural errors and (b) run times as a function of n

sense that PC is preferably used with smaller sample sizes, and TC can take
over more accurately with larger datasets.

5 Conclusion

Causal discovery with continuous variables is tractable with the multivariate
Gaussian assumption and partial correlation: we showed an algorithm based on
it to recover the exact structure in the large sample limit. The algorithm first
checks for each pair of variables if their association can be accounted for by
the intermediate of other variables, and if not, links them, thus determining the
Markov blanket of each node. A second pass performs a local search to detect
the V-structure and orient the graph correctly.

The proposed algorithm outperforms or equals the reference PC algorithm
in accuracy (except for very small sample sizes) in a fraction of its run time.
In the future, we intend to investigate further the behavior of the algorithm
and improve it in these conditions. We will also work on generalizing partial
correlation and the underlying linear regression to the nonlinear case.
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A Appendix: Correctness Proof

For all proofs, we assume the given dataset D is DAG-isomorphic.

Definition 2. Partial correlation between variables X and Y given a set of vari-
ables Z is the correlation of the residuals RX and RY resulting from the linear
regression of X on Z and of Y on Z, respectively.

Definition 3. In an DAG G, two nodes X, Y are d -separated by Z ⊂ V \
{X, Y }, written (X ↔| Y | Z), if every path from X to Y is blocked by Z. A
path is blocked if at least one diverging or serially connected node in in Z or if
at least one converging node and all its descendants are not in Z.

If X and Y are not d-separated by Z, they are d-connected: (X ↔Y | Z).
This is generalized to sets X,Y: (X ↔| Y | Z) holds if pairwise separation holds
for all i, j: (Xi ↔| Yj | Z ).

Lemma 1. In a DAG G, any (undirected) path π of length �(π) > 2 can be
blocked by conditioning on any two consecutive nodes in π.
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Proof. It follows from Def. 3 that a path π is blocked when either at least one
collider (or one of its descendants) is not in S, or when at least one non-collider
is in S. It therefore suffices to show that conditioning on two consecutive nodes
always includes a non-collider. This is the case because two consecutive colliders
would require bidirected arrows, which is a structural impossibility with simple
DAGs. '(

Lemma 2. In a DAG G, two nodes X, Y are d-connected given all other nodes
S = V \ {X, Y } if and only if any of the following conditions holds:

(i) There is an arc from X to Y or from Y to X (i.e., X → Y or X ← Y );
(ii) X and Y have a common child Z (i.e., X → Z ← Y ).

Proof. We prove this by first proving an implication and then its converse.
(⇐=) If (i) holds, then X and Y cannot be d -separated by any set. If (ii)

holds, then Z is included in the conditioning set and d -connects X and Y by
Def. 3.

(=⇒) X and Y are d -connected given a certain conditioning set when at least
one path remains open. Using the conditioning set S, paths of length > 2 are
blocked by Lemma 1 since S contains all nodes on those paths. Paths of length
2 contain a mediating variable Z between X and Z; by Def. 3, S blocks them
unless Z is a common child of X and Y . Paths of length 1 cannot be blocked
by any conditioning set. So the two possible cases where X and Y will be d -
connected are (i) or (ii). '(

Corollary 1. Two variables X, Y are dependent given all other variables S =
V \ {X, Y } if and only if any of the following conditions holds:

(i) X causes Y or Y causes X;
(ii) X and Y have a common effect Z.

Proof. It follows directly from Lemma 2 due to the DAG-isomorphic structure,
which ensures that there exists a DAG where CI and d -separation map one-
to-one. Lemma 2 can then be reread in terms of CI and causation instead of
d -separation and arcs. '(

Lemma 3. The subset Z that has the Collider Set property for the pair (X, Y )
is the set of all direct common effects of X and Y and exists if and only if X is
neither a direct cause nor a direct effect of Y .

Proof. The fact that Z exists if and only if X is neither a direct cause nor
a direct effect of Y is a direct consequence of (1), which states that X and
Y can be made conditionally independent. This is in contradiction with direct
causation. We now assuming that some SXY and Z have been found.

(=⇒) By (1) and (2), we know that each Zi opens a dependence path between
X and Y (which are independent given SXY ) by conditioning on SXY ∪ Zi. By
Def. 3, conditioning on Zi opens a path if Zi is either a colliding node or one of
its descendants. As, by definition, Z ⊂ Tri(X − Y ), we are in the first case. We
conclude that Zi is a direct effect of both X and Y .
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(⇐=) Note that (1) and (2) together are implied in presence of a V-structure
X → Zi ← Y . Thus, a direct effect is compatible with the conditions. The fact
that Z captures all direct effects follows from the maximization of its cardinality.

'(

Theorem 1. If the variables are jointly distributed according to a multivariate
Gaussian, TC returns the PDAG of the Markov equivalence class of the DAG
representing the causal structure of the data-generating process.

Proof. An edge is added in Step 1 between X and Y if we find that ρXY ·V\{X,Y } 
=
0. We conclude (X 
⊥⊥ Y | V \ {X, Y }), owing to the multivariate Gaussian dis-
tribution. Corollary 1 says that this implies that X causes Y or Y causes X , or
that they share a common child. Therefore, each V-structure is turned into a tri-
angle by Step 1. Step 2 then examines each link X − Y part of a triangle, and by
Lemma 3, we know that if the search for a set Z that has the Collider Set property
succeeds, there must be no link between X and Y . We know by the same lemma
that this set includes all colliders for the pair (X, Y ), so that all V-structures are
correctly identified. Step 3 is the same as in the IC or PC algorithms; see Pearl and
Verma [1,2]. '(
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Abstract. Partial rankings are totally ordered subsets of a set of items.
They arise in different applications, such as clickstream analysis and col-
laborative filtering, but can be difficult to analyze with traditional data
analysis techniques as they are combinatorial structures. We propose a
method for creating scatterplots of sets of partial rankings by first repre-
senting them in a high-dimensional space and then applying known
dimensionality reduction methods. We compare different approaches by
using quantitative measures and demonstrate the methods on real data
sets from different application domains. Despite their simplicity the pro-
posed methods can produce useful visualizations that are easy to interpret.

1 Introduction

A partial ranking is a totally ordered, typically smallish subset of a larger set of
items. For example, the large set might contain titles of all movies that came
out in 2006, while a partial ranking contains only movies seen by one individual,
ranked best to worst according to the individual’s opinions of the movies. A
collection of partial rankings would thus contain the preferences of a number of
people, who have all seen a different subset of the entire set of movies.

Partial rankings can be found in a number of applications, such as clickstream
analysis, collaborative filtering, certain voting systems and different scientific ap-
plications. Good data visualization techniques can provide important insight to
the phenomenon described by the data. The human visual system is often much
more efficient in discovering dependencies and structure from visual representa-
tions than most automated data analysis systems, provided the visualization is
accurate and truthful.

The visualization task we address in this work is the following: given a collec-
tion of partial rankings, create a two dimensional scatterplot where each partial
ranking is represented by a single point and similar rankings are close to each
other. These visualizations can be useful for gaining understanding of the struc-
ture of the data, such as making assessments of the number and shape of clusters.

An example of this is given in Figure 1. Here the set of items is the set of
integers 1, 2, . . . , 12, and each partial ranking contains 6 items. The rankings in
column C1 tend to have a 7 or a 9 in the first position and a 6 or a 4 in the
last. On the other hand, the rankings in column C2 have typically a 2 or a 5 in
the first position and mostly end with a 1 or an 11. Clearly the rankings can
be divided to two clusters. The scatterplot in Figure 1 shows two well separated

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 240–251, 2007.
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Fig. 1. Example visualization of the partial rankings displayed on the left. The scatter-
plot is created using PCA and the hypersphere representation (Sect. 2.2). The rankings
are generated by a model with two components (C1 and C2). In the visualization rank-
ings originating from the same component are indicated by the same color.

groups of circles, which correspond to the partial rankings in columns C1 and
C2. Thus, in this simple example we can correctly identify the cluster structure
of the set of partial rankings from the visualization.

For instance, if the partial rankings reflect user preferences the visualization
might reveal if the users can be segmented to groups based on the rankings. Also,
suppose that in addition to the rankings some demographic information is known
about the users. Then it is easy to see whether certain demographics tend to have
homogenous preferences. In case of the movie example one might conjecture that
older people prefer (to some extent) different movies than teenagers, for example.
In the visualization this would mean that points corresponding to rankings given
by adults are in a separate region from the points corresponding to rankings given
by teenagers. Furthermore, if we obtain a new ranking without the auxiliary
information, we might be able to infer some of its properties by considering the
neighboring rankings (the properties of which are known) in the visualization.

To visualize partial rankings, we first map them to a high-dimensional space
and then use existing dimension reduction methods to obtain a two dimensional
representation of the rankings. Numerous algorithms for dimension reduction
have been proposed, we use PCA (see any book on multivariate statistics), Local
MDS [8], and Isomap [6], as they together cover many features typically found
in dimension reduction algorithms.

We also present a generating model for partial rankings that assumes some
fixed number of underlying components that each generate partial rankings in-
dependent of the other components. This way we can take two approaches to
evaluate the quality of a visualization. On one hand we can measure how well
partial rankings generated by different components can be separated from those
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generated by other components in the visualization. On the other hand we can
consider only the local neighborhood of a partial ranking in the high dimensional
space and see how this is preserved by the projection.

Algorithms for dimension reduction require as input either the high dimen-
sional vectors or a function that defines interpoint distances in the high dimen-
sional space. If the feature vectors are available, we can compute the interpoint
distances easily by using some suitable metric. We present two different represen-
tations of partial rankings as high dimensional vectors. The first representation
is motivated by the problem that arises when we want to measure the distance
between two partial rankings that have no items in common. The second one
has a geometric interpretation as the partial rankings are mapped to the surface
of a hypersphere.

The rest of this paper is organized as follows. Section 2 discusses two different
ways of representing partial rankings in a high-dimensional space. The generating
model is described in Section 3 and our measures for evaluating the quality of a
visualization are defined in Section 4. Experimental results are given in Section 5
while Section 6 is a short conclusion.

2 Representations of Partial Rankings

In order to apply a dimension reduction method on the set D of partial rankings,
we must devise a suitable representation for the data. These representations are
also used in [7], where the goal is quite different from the this paper: [7] looks for
clusters high likelihood and does not consider aspects related to visualization at
all. We discuss necessary definitions and notation at first.

Let M be a finite set of items to be ranked, and let n denote the size of M . A
partial ranking φ is a totally ordered subset of M . An item u is covered by φ if it
belongs to the subset of M that φ orders. We write u ∈ φ if the item u is covered
by φ. Denote by l the length of φ, that is, the number of items that it covers. We
let φ(u) denote the rank of item u if φ covers u, otherwise φ(u) is not defined.
The reverse of φ, denoted φR, is a partial ranking that covers the same items as
φ but orders them in exactly the opposite way. Furthermore, a partial ranking
is a partial order1 on the subset of M it covers. This means we can view φ as a
set of ordered pairs. The pair (u, v) belongs to φ, denoted (u, v) ∈ φ, whenever
φ(u) < φ(v), that is, φ ranks u before v.

2.1 Graph Representation

The agreement graph of D, denoted Ga(D), is an undirected graph with the
partial rankings as vertices. An edge connects the partial rankings φ and ψ, if
and only if (u, v) ∈ φ ∩ ψ for some u and v and there is no u′ and v′ such that
(u′, v′) ∈ φ and (v′, u′) ∈ ψ. The disagreement graph of D, denoted Gd(D), is
also an undirected graph with the partial rankings as vertices. An edge connects

1 A reflexive, transitive and asymmetric binary relation.
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the partial rankings φ and ψ, if and only if (u, v) ∈ φ and (v, u) ∈ ψ for some u
and v. Intuitively, two partial rankings are connected in Ga(D) if they agree at
least on the order of one pair of items and have no disagreeing pairs. Likewise,
two partial rankings are connected in Gd(D) if the partial rankings disagree on
the order of at least one pair of items. They are allowed to have agreeing pairs,
however.

Denote the adjacency matrices of the agreement and disagreement graphs by
Ga(D) and Gd(D) as well. Consider the matrix X = Ga(D)−Gd(D). We define
the graph representation of φ as the row of X that corresponds to φ, denoted
X(φ, :). As the similarity of two fragments is reflected in the number of common
neighbors they have in Ga(D) and Gd(D), the vectors X(φ, :) and X(ψ, :) tend
to be positively correlated when φ and ψ are similar, and negatively correlated
when φ and ψ are dissimilar.

The motivation for this representation is based on the assumption that a
partial ranking is actually a part of a complete ranking (one that covers all of
M) and that the partial rankings in D have been generated by several complete
rankings. Two partial rankings can be generated by the same complete ranking
(and hence should be considered in some sense similar) but still have no items
in common.

For example, let M = {a, b, c, d, e, f, g, h}, and suppose φ = a < b < c < d and
ψ = e < f < g < h have been generated by the same permutation. Establishing
that this is the case based on φ and ψ alone is not possible, but suppose D
contains also the partial rankings c < d < e < f and a < b < g < h. Both φ
and ψ are connected to these in Ga(D). As the number of common neighbors
of φ and ψ increases in both Ga(D) and Gd(D), the likelier it becomes that
they indeed are generated by the same permutation and should therefore be
considered similar.

Note that the dimensionality of the graph representation grows linearly in the
size of D and constructing the agreement and disagreement graphs takes time
O(|D|2).

2.2 Hypersphere Representation

As the graph representation does not scale too well with increasing size of D, we
consider next an another approach that behaves better in this respect. The basic
idea is to map the partial rankings to points on the surface of an n-dimensional
hypersphere. Thus the dimensionality of the representation is limited by |M |
instead of |D|. Moreover, it turns out that computing this representation from
a given set of partial rankings scales linearly in the size of D.

Let f be a mapping from D to R
n and let d be a distance measure in R

n.
Intuitively, the distance between φ and φR should be the maximum distance
between any two partial rankings. Hence, we want to have (1) d(f(φ), f(φR)) =
maxψ{d(f(φ), f(ψ))}. Moreover, all partial rankings should be treated equally
in this respect, which means we must have (2) d(f(φ), f(φR)) = d(f(ψ), f(ψR))
for all φ and ψ as well. Finally, d(f(φ), f(φ)) = 0 for all φ.
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It is not hard to see that the above requirements are satisfied when f maps the
partial rankings to points on the surface of a hypersphere. For the complete rank-
ings π this is easily accomplished by using a method similar to the Borda score
(see e.g. [5]). We represent the partial ranking φ as an n-dimensional vector, one
dimension for each item in M , so that the value at the dimension corresponding
to u depends on the rank φ(u). Let fπ = f(π) and denoting by fπ(u) the coor-
dinate that corresponds to item u in the n-dimensional vector representation we
want to construct, define

fπ(u) = Z(−n− 1
2

+ π(u)− 1), (1)

where Z is a normalization constant so that the length of fπ equals 1. Require-
ments (1) and (2) are satisfied when d is for example the cosine distance (one
minus the cosine of the angle between two vectors).

With partial rankings the situation is conceptually more complicated, as it
is not obvious what value to assign those coordinates that correspond to items
u 
∈ φ. The solution turns out to be very easy, however.

We can view the partial ranking φ as a partial order that ranks those items that
belong to φ and leaves the mutual order between all remaining items unspecified.
A linear extension of the partial order φ is a total order that ranks u before v
whenever (u, v) ∈ φ. There are in total n!/l! different linear extensions of φ,
when φ is a partial ranking of length l. As the linear extensions are complete
rankings, we can use Equation (1) to find their representations in R

n.
We define the representation fφ = f(φ) of φ as the center of these points,

i.e., f(φ) is the mean of all f(π) normalized to unit length, where π is a linear
extension of φ. It can be shown that this is obtained when we let

fφ(u) = Q(− l− 1
2

+ φ(u)− 1) (2)

for all u ∈ φ, and otherwise let fφ(u) = 0. Here Q is a normalization constant
and l is the length of φ. Computing this can be done in time O(l|D|).

3 A Generative Model for Partial Rankings

In this section we briefly discuss a generating model for partial rankings. This
model is used in the experiments to evaluate the quality of the visualizations by
measuring how well certain properties of the model are preserved by the projec-
tion, and how the quality of a visualization is affected by different parameters
of the model.

We assume the partial rankings are generated by a population of individuals.
This population can be segmented to groups j = 1, . . . , k so that members of
a certain group j have similar preferences. This is modeled by a group specific
partial order Bj on M . Suppose an individual i from group j had access to all
of M (i.e., had seen all movies that came out in 2006). Then i can in theory
specify a total order π on the items according to his preferences. As i belongs to
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group j, we assume π is a linear extension of Bj . However, since in general an
individual can only evaluate a subset of the items (those movies he has seen), i
can specify only the partial ranking φ that covers the subset known to him, but
ranks those as π would.

The generating model works as follows: initialize the model by picking k partial
orders Bj on M . Then for each individual, first pick one Bj , then pick one linear
extension π of Bj , and finally pick a subset of l items and create the partial
ranking by projecting π on this subset. In each case we use a uniform distribution
on the respective sample space.

To simplify matters computationally, we select the Bjs from a restricted class
of partial orders that are called either rankings with ties [2] or bucket orders [3].
These are essentially totally ordered, disjoint subsets (“buckets”) of the complete
set of items. For example, we could say that in a given group all five star movies
are in the first subset, all four star movies in the second and so on, with the one
star movies in the last subset. A parameter of the model is thus also the number
of buckets in a bucket order, denoted b.

4 The Quality of a Visualization

Evaluating the quality of a visualization can be done both qualitatively and
quantitatively. In this work we concentrate on using quantitative measures. Our
approach is to view visualization as an information retrieval task, as recently
proposed in [9]. This allows us to assess the visualization in terms of precision
and recall, which are typically used to evaluate IR systems. Precision is defined
as the fraction of relevant documents in the set of retrieved documents. Recall
is the fraction of relevant documents retrieved.

To use this framework for evaluating a visualization we must define what
points constitute the set of relevant and retrieved partial rankings given some
query. We assume that the data analysis task to be solved by using the visu-
alization calls for the identification of similar partial rankings to a given query
ranking. Hence the set of relevant rankings can be defined either as i) those that
have been generated by the same component of the generating model or ii) those
that are close to the query ranking in the high dimensional space. Making this
distinction allows us to separately measure how well the visualizations preserve
global and local features. Finally, the set of retrieved rankings are those that are
close to the query ranking in the visualization.

In the experiments we will measure precision in terms of the components of
the generating model, denoted pc(i) and the local neighborhoods of the high
dimensional representations, denoted pn(i). Let Oq(i) be the set of q closest
points to point i in the high dimensional space. Likewise, let Pw(i) be the set
of w closest points to i in the visualization. Finally, denote by C(i) the set of
partial rankings that have been generated by the same component as i. We have
thus

pc(i) =
|C(i) ∩ Pw(i)|

|Pw(i)| and pn(i) =
|Oq(i) ∩ Pw(i)|

|Pq(i)|
. (3)
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The final precision values for a given visualization are averages of pc(i) and pn(i)
over all possible i.

We use a different distance function depending on the representation to find
the set of relevant rankings. With the hypersphere representation we use co-
sine distance, and with the graph representation we use correlation. Distances
between points in the visualization is always measured using the Euclidean
distance.

5 Experiments

The algorithms we compare in the experiments are PCA, Local MDS [8], and
Isomap [6]. Local MDS is run with λ = 0 (in this case Local MDS corresponds
to Curvilinear Component Analysis [1]) and λ = 0.5. These algorithms were
chosen as they are well established, and as they together cover most of the typical
approaches found in dimensionality reduction methods, such as linear projection
(PCA), nonlinear projection by minimizing the differences in distances (Local
MDS) and manifold embedding (Isomap).

5.1 Artificial Data

We use artificial data to examine how varying the parameters of the generating
model affects the quality of the visualizations. Parameters of interest are the
length of a partial ranking l, the number of components in the model (k) and the
number of buckets per component (b). The total number of partial rankings was
500 in each case. The neighborhood size w required for computing the precision
values was set to 50. This is because we assume that when people inspect the
visualizations they tend to look at the general surroundings of a “query” point
and not just the few closest neighbors. The set of relevant rankings for computing
pn is O20(i), that is, we view the 20 closest rankings as being relevant.

Results for the hypersphere and graph representations are shown in figures 2
and 3, respectively. The plotted values are averages of 20 rounds. A new input
was generated on every round. Both of the representations behave very similarly.
This observation is not obvious, as the graph and hypersphere representations
are based on rather different approaches. In general using the hypersphere rep-
resentation seems to give slightly better results.

In both figures it is immediately seen that the curves behave as expected as
the parameters of the generating model are varied. With small values of l and
b and high values of k the data is inherently more difficult to analyze as there
is less information available. This is reflected by a worse performance in the
visualizations. Especially the differences can be seen in case of the component-
wise precision pc.

Another clear phenomenon is that Local MDS with λ = 0 (represented by
a plus sign) outperforms all other methods by a fair margin when it comes to
pn. Conversely, the same method turns out to be the poorest choice when pc

is considered. PCA gives constantly best performance with pc. This difference
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Fig. 2. Characteristics of the visualizations based on the hypersphere representation
using different algorithms for dimension reduction. PCA: circle, IM: square, LMDS
λ = 0: plus and LMDS λ = 0.5: triangle. l: length of a partial ranking, k number of
components in the input, b number of buckets per component.

is easily explained by considering how the methods operate: PCA attempts to
preserve a global structure by creating a maximum variance projection whereas
LMDS, especially with λ = 0, explicitely tries to preserve the local neighborhood
of a point. Increasing λ to 0.5 improves the performance of LMDS slightly in
terms of pc but dramatically decreases it in terms of pn.

5.2 Voting, Clickstream and Preference Data

We consider three real world data sets as examples. The first one is voting data
from the 2002 general election in Ireland. The data is collected in the electoral
district of northern Dublin and is publicly available2. Each voter is allowed
to rank as many candidates in order of preference. The data consists of these
rankings. The total number of candidates is 12. We selected a subset of the
entire data where each voter had ranked at least 4 and at most 6 candidates.
The average number of candidates in a vote is 4.7.

The second data contains rankings of 17 categories of the MSNBC portal3.
Each ranking corresponds to the sequence in which a user browsed through
different areas of the portal. If the user visited the same category several times
we only consider the first occurrence of a category. The data was pruned to retain
only partial rankings that contain at least 6 and at most 8 different categories.
The average number of categories visited by a user is 6.5.
2 http://www.dublincountyreturningofficer.com/
3 http://kdd.ics.uci.edu/databases/msnbc/
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Fig. 3. Characteristics of the visualizations based on the graph representation using
different algorithms for dimension reduction. PCA: circle, IM: square, LMDS λ = 0:
plus and LMDS λ = 0.5: triangle. l: length of a partial ranking, k number of components
in the input, b number of buckets per component.

In both cases we computed a clustering of the partial rankings by using the
method presented in [7]. The number of clusters found in the voting and MSNBC
data sets is 2 and 3, respectively. We use the clusterings obtained this way when
evaluating the component specific precision pc. These results may vary slightly
as the clustering algorithm can produce different results on separate runs.

Figure 4 shows example visualizations containing a random subset of 500
rankings of both data sets using different dimension reduction techniques. Par-
tial rankings were represented using the hypersphere method. Graphs on the
right side indicate how pc and pn behave when the neighborhood size in the
visualization is increased. The LMDS based methods are superior with both pc

and pn. This could be due to the probable absence of truly distinct clusters
in the data sets. Hence both pc and pn measure essentially the preservation of
the local neighborhood. For large neighborhoods the methods tend to produce
equally good results.

Our third data set4 is from a survey that studied people’s preferences towards
different types of sushi [4]. The complete data contains 5000 partial rankings of
length 10, one for each participant. In addition to the rankings, also demographic
information, such as gender, age and place of residence is included for each
respondent. A subset of this data is visualized using LMDS with λ = 0 in
Figure 5 as an example. The subset contains rankings given by respondents who
were both born and are currently living in the eastern part of Japan. Moreover,

4 http://www.kamishima.net/sushi/



Visualizing Sets of Partial Rankings 249

−0.5 0 0.5

−0.5

0

0.5

PCA

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6

IM

−4 −2 0

−8

−7

−6

−5

−4

−3
LMDS 0.00

−4 −3 −2

1

2

3

LMDS 0.50

0 20 40 60
0.7

0.75

0.8

0.85

0.9

w

p c

performance

10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

w
p n

performance

−0.5 0 0.5 1

−0.5

0

0.5

PCA

−0.4−0.2 0 0.2 0.4 0.6 0.8

−0.5

0

0.5

IM

2 4 6 8

0

2

4

6

LMDS 0.00

−1 0 1 2

3

4

5

6

LMDS 0.50

0 20 40 60
0.54

0.56

0.58

0.6

0.62

0.64

w

p c

performance

10 20 30 40 50

0.2

0.3

0.4

0.5

w

p n

performance

Fig. 4. Example visualizations of a voting data (above) and a clickstream data (below).
Each dot in the scatterplots corresponds to one partial ranking. Similar rankings are
plotted next to each other. The voting data is assumed to have two clusters while the
clickstream data has three. In both cases ten closest neighbors (in the input space)
of the point indicated by a surrounding square are indicated by circles. This gives an
intuition how the local neighborhood of a point is preserved in the projection. For the
graphs on the right PCA: circle, IM: square, LMDS λ = 0: plus and LMDS λ = 0.5:
triangle.
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Fig. 5. A visualization of a subset of a sushi preference data. Rankings of respondents
who indicated themselves as being 15-19 years old are plotted in light gray (or green)
while the black dots correspond to respondents who reported themselves as being 50
years or older.

we included only teenagers (aged 15-19 years, indicated in light gray/green) and
people aged over 50 (indicated in black) to the subset. Even though the groups
are globally overlapping, we can easily identify local areas that tend to contain
mostly respondents belonging to one of the groups.

6 Conclusions

We have considered the problem of creating two dimensional visualizations of a
set of partial rankings. The approach was to first represent the partial rankings
in a high dimensional space and then apply a dimension reduction method to
obtain the visualization. We showed that this approach leads to potentially useful
visualizations, the quality of which depends both on the characteristics of the
input data and the method used. Using PCA for dimension reduction tends to
preserve global features better whereas using MDS based methods preserve local
features. Perhaps somewhat surprisingly both high dimensional representations
for partial rankings that were discussed result in very similar visualizations, even
though the representations are based on very different principles. In general, sets
of rankings that contain less information about the order of the items are more
difficult to visualize.
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Abstract. Multidimensional Scaling Algorithms (MDS) allow us to vi-
sualize high dimensional object relationships in an intuitive way. An
interesting application of the MDS algorithms is the visualization of the
semantic relations among documents or terms in textual databases.

However, the MDS algorithms proposed in the literature exhibit a low
discriminant power. The unsupervised nature of the algorithms and the
’curse of dimensionality’ favor the overlapping amongdifferent topics in the
map. This problem can be overcome considering that many textual collec-
tions provide frequently a categorization for a small subset of documents.

In this paper we define new semi-supervised measures that reflect bet-
ter the semantic classes of the textual collection considering the a priori
categorization of a subset of documents. Next the dissimilarities are in-
corporated into the Torgerson MDS algorithm to improve the separation
among topics in the map. The experimental results show that the model
proposed outperforms well known unsupervised alternatives.

1 Introduction

Visualization algorithms are multivariate data analysis techniques that help to
discover the underlying structure of high dimensional data. Several techniques
have been proposed to this aim such as Correspondence Analysis [15], Self Orga-
nizing Maps (SOM) [17,13] or Multidimensional Scaling algorithms (MDS) [10].
In particular, the Torgerson MDS algorithm has been successfully applied to real
problems because it is based on an efficient and robust linear algebra operation
such as the Singular Value Decomposition (SVD) [10].

An interesting application of the Torgerson MDS algorithm is the visualiza-
tion of the semantic relations among terms or documents [15,18] in text mining
problems. This visual representation gives more information than just the hard
classification of terms or documents and is particularly helpful for novel users
[9]. However, the word maps generated by most MDS algorithms have a low
discriminant power. Thus, due to the unsupervised nature of the algorithms and
to the ‘curse of dimensionality’ the specific terms tend to overlap strongly in
the center map disregarding their semantic meaning [6,19]. Then, the relations
induced by the map become often meaningless.
� Corresponding author.
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The visualization of term relationships has been usually done in the litera-
ture by non-supervised techniques [15]. Moreover, common semi-supervised al-
gorithms [14] can not be applied because the categorization of a small subset of
terms is a complex and time consuming task [1,20]. However, textual databases
provide often a classification for a subset of documents [1] because this is easier
for human experts. Therefore, the organization of terms into topics can only be
improved considering a small subset of labels in the space of documents.

In this paper we propose a semi-supervised version of the Torgerson MDS
algorithm that improves the visualization of the term relationships taking ad-
vantage of the available labels in the space of documents. To this aim, we first
introduce a new class of semi-supervised measures that take into account a ca-
tegorization for a subset of documents via the Mutual Information [24]. Next,
the Torgerson MDS algorithm is applied to generate the word map considering
this similarity matrix. Notice that common semi-supervised clustering and vi-
sualization algorithms proposed in the literature [21,7,5] take into account the
class labels modifying the error function to be optimized. This results frequently
in complex non-linear optimization problems. Our approach introduces partial
supervision via the definition of a semi-supervised similarity and does not mo-
dify the error function. Therefore, the semi-supervised algorithm proposed keeps
the nice properties of the original Torgerson MDS algorithm.

This paper is organized as follows. In section 2 the Torgerson MDS algorithm
is introduced. Section 3 presents the new semi-supervised MDS algorithm. In
section 4 the algorithm is applied to the visualization of term relationships.
Finally section 5 gets conclusions and outlines future research trends.

2 The Torgerson MDS Algorithm

Let X(n × d) be a matrix of n objects represented in R
d and D = (δij) the

dissimilarity matrix made up of the object proximities. The Multidimensional
Scaling algorithms look for an object configuration in a low dimensional space
(usually two for visualization) in such a way that the inter-pattern Euclidean
distances reflect approximately the original dissimilarity matrix.

A large variety of algorithms have been proposed in the literature. In this
paper we have considered the Torgerson MDS algorithm [10] because it exhibits
several properties interesting for text mining problems. First, the algorithm with
the Euclidean distance is equivalent to a linear PCA [10] that can be solved
efficiently through a Singular Value Decomposition (SVD) [4]. Second, the opti-
mization problem doesn’t have local minima. Notice that many MDS algorithms
such as Sammon or certain neural based techniques [17] rely on non-linear op-
timization methods that can get stuck in local minima. Finally, the Torgerson
MDS algorithm can be considered with certain similarities equivalent to the
Latent Semantic Indexing (LSI) [3] that has been successfully applied in text
mining problems.

Next we introduce briefly the Torgerson MDS algorithm. For a detailed ex-
planation see [10].



254 Á. Blanco and M. Mart́ın-Merino

Define the matrix A(n × n) as [A]ij = aij = − 1
2δ2

ij . The inner product matrix
B can be obtained as:

B = XXT = HAH (1)

where H is a centering matrix defined as:

H = I − 1
n
11T (2)

with 1 = [1 1 . . .1]T a column matrix of n ones and I(n×n) the identity matrix.
The Torgerson MDS algorithm looks for a projection W : R

d → R
k to a lower

dimensional space such that the Euclidean distances in R
k preserve as much

as possible the original dissimilarities. The object coordinates that verify this
condition are given [10] by:

Xk = V kΛ
1
2
k , (3)

where V k is the n×k orthonormal matrix whose columns are the kth first eigen
vectors of B and Λk = diag(λ1, . . . , λk) is a diagonal matrix with λi the ith
eigenvalue of B. The object coordinates in equation (3) can be obtained through
a SVD. This operation is particularly efficient when only the first eigenvectors
are needed as it happens for visualization purposes.

3 A Semi-supervised MDS Algorithm

The word maps generated by the Torgerson MDS algorithm often suffer from
a low discriminant power. The unsupervised nature of the algorithm favors the
overlapping between different topics in the map. Moreover, due to the “curse of
dimensionality” the words concentrate around the center map and the smaller
distances become often meaningless [19,6].

In this section we explain how the categorization of a subset of documents
by human experts can be exploited to improve the word maps generated by
the MDS algorithm. The novelty of this problem relies in that we are trying to
improve an unsupervised technique that works in the space of terms considering
the available labels in the space of documents. To this aim rather than modifying
the error function as is usually done by supervised clustering and visualization
algorithms [21,7,5] we define a semi-supervised similarity that takes into account
the class labels. This similarity will reflect both, the semantic classes of the
textual collection and the term relationships inside each class. Once the semi-
supervised dissimilarities are computed, the Torgerson MDS algorithm can be
applied to generate a visual representation of the term relationships. Notice that
our approach allow us to extend to the semi-supervised case any algorithm that
works from a dissimilarity matrix.

Let ti, tj be two terms and {Ck}c
k=1 the set of document categories created

by human experts. The association between terms and categories of documents
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is usually evaluated in the Information Retrieval literature by the Mutual Infor-
mation [24] defined as:

I(ti; Ck) = log
p(ti, Ck)

p(ti)p(Ck)
, (4)

where p(ti, Ck) denotes the joint cooccurrence probability of term ti and class
Ck. p(ti), p(Ck) are the a priori probability of occurrence of term ti and class Ck

respectively. The Mutual Information is able to capture non-linear relationships
between terms and categories.

However, it has been pointed out in the literature [24] that the index (4)
gives higher score to rare terms. To overcome this problem we have considered
a weighted version of the previous index defined as

I ′(ti; Ck) = p(ti, Ck) log
p(ti, Ck)

p(ti)p(Ck)
. (5)

This index reduces obviously the weight of the less frequent terms.
Now, we can define a similarity measure between terms considering the do-

cument class labels. This measure will be referred to as supervised similarity
from now on. Obviously, this similarity should become large for terms that are
related/unrelated with the same categories of documents. This suggests the fo-
llowing definition for the term similarity:

s1(ti, tj) =
∑

k I ′(ti; Ck)I ′(tj ; Ck)
√∑

k(I ′(ti; Ck))2
√∑

k(I ′(tj ; Ck))2
. (6)

The numerator of this similarity will become large for terms that are corre-
lated with similar categories. Notice that the index (6) can be considered a
cosine similarity between the vectors I ′(ti; ·) = [I ′(ti; C1), . . . , I ′(ti; Cc)] and
I ′(tj ; ·) = [I ′(tj ; C1), . . . , I ′(tj ; Cc)]. This allow us to interpret the new similarity
as a non-linear transformation to a feature space [23] where a cosine similarity is
computed. Other dissimilarities can be considered in feature space but we have
chosen the cosine because it has been widely used in the Information Retrieval
literature [16]. Finally the similarity (6) is translated and scaled so that it takes
values in the interval [0, 1].

The similarity defined above can be considered an average over all the cate-
gories. Next, we provide an alternative definition for the supervised similarity
that considers only the class with higher score. It can be written as

s2(ti, tj) = max
k
{Ī(ti; Ck) ∗ Ī(tj ; Ck)} , (7)

where Ī is a normalized Mutual Information defined as

Ī(ti; Ck) =
I(ti; Ck)

maxl{I(ti; Cl)}
. (8)

This normalization factor guarantees that s2(ti, ti) = 1. The similarity (7) will
get large when both terms are strongly correlated with one of the classes.
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The supervised measures proposed earlier will score high terms that are re-
lated with the same categories. However, for visualization purposes it is also
interesting to reflect the semantic relations among the terms inside each class or
among the main topics. This information is provided by unsupervised measures
such as for instance the cosine. This justifies the definition of a semi-supervised
similarity as a convex combination of a supervised and an unsupervised measure.
This similarity will reflect both, the semantic groups of the textual collection and
the term relationships inside each topic. It is defined as follows:

s(ti, tj) = λssup(ti, tj) + (1− λ)sunsup(ti, tj) , (9)

where ssup and sunsup denote the supervised and unsupervised measures respec-
tively. The parameter λ verifies 0 ≤ λ ≤ 1. This parameter will determine if
the resulting map reflects better the semantic classes of the textual collection (λ
large) or the semantic relations among the terms (λ small).
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Fig. 2. Histogram of the average semi-
supervised similarity measure

The semi-supervised similarity (9) has an interesting property that is worth to
mention. Figure 1 shows the similarity histogram for an unsupervised measure
such as the cosine while figure 2 shows the histogram for a semi-supervised one.
The unsupervised measure (fig. 1) is strongly degraded by the ‘curse of dimensio-
nality’. The histogram is very skew and most of the similarities are zero or close
to zero [2]. Thus, MDS algorithms will put together terms in the map just be-
cause they are far away from the same subset of words. Hence, small distances in
the map could suggest false term relationships. Additionally, the map will show
a spherical distribution that has nothing to do with the underlying structure of
the data [6]. On the other hand the standard deviation for the semi-supervised
similarity (fig. 2) is larger than for the cosine similarity and the histogram is
smoother. This suggests that the semi-supervised similarity is more robust to
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the ’curse of dimensionality’ and consequently any algorithm based on distances
will perform better [19,6].

Finally the Torgerson MDS algorithm introduced in section 2 is applied to
derive a visual representation of the semi-supervised similarities. To this aim,
the similarity (9) must be transformed into a dissimilarity using for instance the
following rule δij = 1− sij [10]. Figure 2 suggests that for the textual collection
considered in this paper the semi-supervised measure defined gives rise to an
inner product matrix B semi-definite positive. Therefore the Torgerson MDS
algorithm can be used to get an approximate representation of the data in a
space of dimension < n− 1 where n is the sample size.

The semi-supervised MDS algorithm presented earlier assumes that the whole
textual collection is categorized by human experts. However, it is very common
in text mining problems that only a small percentage of the textual collection is
labeled [1]. Hence, we have a small training set of categorized documents and a
much larger test set of documents not labeled. A large variety of techniques have
been proposed in the literature to work this kind of datasets. In this paper we
have considered the Transductive Support Vector Machines (TSVM) [23] because
they have been successfully applied to the categorization of document collections
[11]. The Transductive SVM aims at finding a decision function that maximizes
the margin of both, labeled and unlabeled patterns. This technique allow us to
reduce significantly the misclassification error of the inductive SVM, particularly
when the training set is very small [11]. Once the documents are classified using
the TSVM, the semi-supervised similarity (9) is computed as in the supervised
case. However, those terms that appear in less than five documents categorized
by human experts or by the TSVM are considered unreliable and the similarity
is computed in an unsupervised way (λ = 0).

4 Experimental Results

In this section we apply the proposed algorithms to the construction of word
maps that visualize term semantic relationships. The textual collection consi-
dered, is made up of 2000 scientific abstracts retrieved from three commercial
databases ‘LISA’, ‘INSPEC’ and ‘Sociological Abstracts’. For each database a
thesaurus created by human experts is available. Therefore, the thesaurus in-
duces a classification of terms according to their semantic meaning. This will
allow us to exhaustively check the term associations created by the map.

Assessing the performance of algorithms that generate word maps is not an
easy task. In this paper the maps are evaluated from different viewpoints through
several objective functions. This methodology guaranty the objectivity and va-
lidity of the experimental results.

The objective measures considered in this paper quantify the agreement be-
tween the semantic word classes induced by the map and the thesaurus. There-
fore, once the objects have been mapped, they are grouped into topics with a
clustering algorithm (for instance PAM [12]). Next we check if words assigned
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to the same cluster in the map are related in the thesaurus. To this aim we have
considered the following objective measures:

– F measure [16]: It is a compromise between ‘Recall’ and ‘Precision’ and it
has been widely used by the Information Retrieval community. Intuitively, F
measures if words associated by the thesaurus are clustered together in the
map.

– Entropy measure [22]: It measures the uncertainty for the classification of
words that belong to the same cluster. Small values suggest little overlapping
between different topics in the maps. Therefore smaller values are considered
better.

– Mutual Information [22]: It is a non-linear correlation measure between the
word classification induced by the thesaurus and the word classification given
by the clustering algorithm. Notice that this measure gives more weight
to specific terms [24] and therefore provides a valuable information about
changes in the position of less frequent terms.

Table 1. Empirical evaluation of several semi-supervised visualization algorithms for
a collection of scientific abstracts

F E I

Torgerson MDS 0.46 0.55 0.17
Least square MDS 0.53 0.52 0.16

Torgerson MDS (Average) 0.69 0.43 0.27
Torgerson MDS (Maximum) 0.77 0.36 0.31
Least square MDS (Average) 0.70 0.42 0.27
Least square MDS (Maximum) 0.76 0.38 0.31

Table 1 shows the experimental results for the semi-supervised MDS algo-
rithms proposed in this paper. Two unsupervised techniques have been consi-
dered as reference, the Torgerson MDS algorithm introduced in section 2 and
a standard least square MDS algorithm [10]. For each technique, two semi-
supervised similarities have been considered, the average (see equation (6)) and
the maximum (see equation (7)). As unsupervised measure we have selected the
cosine because it has been widely used by the information retrieval community
[16] with reasonable good results.

The least square MDS has been always initialized by a PCA to avoid that the
algorithm get stuck in a local minima. The λ parameter in the semi-supervised
measures has been set up to 0.5 which achieves a good balance between struc-
ture preservation and topic separation in the map. Increasing the value of λ will
improve the separation among different topics in the map. However, this will dis-
tort the relationships induced for terms related to the same topic. Conversely,
smaller values of λ will favor the overlapping among topics moving toward the
unsupervised case. Therefore, λ is a user defined parameter that depends on the
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problem at hand. From the analysis of table 1 the following conclusions can be
drawn:

– The semi-supervised techniques improve significantly the word maps genera-
ted by the unsupervised ones. In particular, the semi-supervised Torgerson
MDS (rows 3-4) reduces significantly the overlapping among the different
topics in the map (E is significantly reduced). The Mutual Information is
particularly improved which suggests that the overlapping among the spe-
cific terms that belong to different topics is reduced in the map. Finally, the
F measure corroborates the superiority of the proposed algorithm.

The least square MDS algorithm (rows 5-6) improves similarly the maps
generated when the semi-supervised dissimilarities are considered. This sug-
gests that many algorithms that work from a dissimilarity measure can be-
nefit from the ideas presented in this paper.

– The maximum semi-supervised similarity gives always better results than the
average. This can be explained because the maximum supervised similarity
is defined considering only the class that is more correlated with the terms.
This feature improves the separation of the topics in the map.

Finally figure 3 illustrates the performance of the semi-supervised Torgerson
MDS algorithm from a qualitative point of view. For the sake of clarity only a
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subset of words that belong to three topics have been drawn. We report that
the term associations induced by the map are satisfactory and that the semantic
topics can be easily identified in the map.

As we have mentioned earlier, in text mining applications only a small subset
of documents is categorized by human experts. Therefore, from a practical point
of view it is very important to evaluate the sensibility of the method proposed
to the percentage of categorized documents. The Transductive SVM has been
implemented using the SVMlight software. For the multicategory classification we
have considered the ‘one against one’ approach. The regularization parameters
C and C∗ for training and test sets respectively have been set up to one. Finally,
λ = 0.5 in the semi-supervised measures. The empirical results suggest that this
value allow us to identify easily the semantic topics in the word maps and the
term relationships.
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Fig. 4. Evaluation measures for the semi-supervised Torgerson MDS algorithm with
average similarity when the percentage of documents labeled range from 0% to 100%

Figure 4 shows the evaluation measures when the percentage of documents
labeled range from 0% to 100%. According to this figure the quality of the word
maps generated is similar whenever the percentage of documents labeled is larger
than 10%. Moreover, with only 5% of documents categorized the performance
is not significantly degraded. Finally, we report that the semi-supervised MDS
algorithms with only 10% of documents categorized improve significantly the
unsupervised counterparts (0% of documents labeled).
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5 Conclusions and Future Research Trends

In this paper we have proposed a semi-supervised version of the Torgerson MDS
algorithm for textual data analysis. The new model takes advantage of a catego-
rization of a subset of documents to improve the discriminant power of the word
maps generated. The algorithm proposed has been tested using a real textual
collection and evaluated through several objective functions.

The experimental results suggest that the proposed algorithm improves sig-
nificantly well known alternatives that rely solely on unsupervised measures.
In particular the overlapping among different topics in the map is significantly
reduced improving the discriminant power of the algorithms.

Future research will focus on the development of new semi-supervised clus-
tering algorithms.

Acknowledgements. Financial support from Junta de Castilla y León grant
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Robert Koch Platz 10-14

D-38440 Wolfsburg, Germany
f.hoeppner@fh-wolfenbuettel.de

3 Institute for Psychology
University of Basel

Missionsstrasse 60/62
Basel, CH-4055, Switzerland
v.kolodyazhniy@unibas.ch

Abstract. We revisit the problem of representing a high-dimensional
data set by a distance-preserving projection onto a two-dimensional
plane. This problem is solved by well-known techniques, such as mul-
tidimensional scaling. There, the data is projected onto a flat plane
and the Euclidean metric is used for distance calculation. In real to-
pographic maps, however, travel distance (or time) is not determined
by (Euclidean) distance alone, but also influenced by map features such
as mountains or lakes. We investigate how to utilize landscape features
for a distance-preserving projection. A first approach with rectangular
cylindrical mountains in the MDS landscape is presented.

Keywords: visualisation, multidimensional scaling, landscape multidi-
mensional scaling.

1 Introduction

Large data sets call for tools that (semi-) automate as many of the tedious steps
in data analysis as possible, but usually cannot replace the visual inspection of
data or results, because the visual perception of humans is extremely good in
detecting abnormalities that are difficult to detect automatically. This explains
why visualisation techniques are useful and important, even in times of powerful
data mining techniques and large data sets.

In this paper, we therefore revisit the problem of mapping high-dimensional
data to a two- or three-dimensional representation. There are various approaches
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to solve this problem: a data record may be represented by a pictogram, where
each attribute is mapped to a detail of the pictogram (e.g. stick figures or Chernoff
faces), a record may be represented by a sequence of line segments (e.g. one line
segment per attribute as with parallel coordinates), or it may be projected into
a low-dimensional space and then represented by a dot in a scatter plot. In the
latter category the main objective is usually to preserve either the variance of the
data (principal component analysis (PCA) [4]) or the distances between the data
objects (e.g. multidimensional scaling (MDS) [7], and modifications thereof [8]).
For most of these techniques the graph consists of one graphical element per data
record (pictogram, sequence of lines, dot). Only with very few visualisation tech-
niques additional elements provide further information about the depicted data.
Just like in a map with level curves, where the existence of mountains between
two geographical positions indicate a longer traveltime, we want to understand
the graph as a landscape that carries information in its own right.

The paper is organized as follows: In section 2 we discuss the kind of landscape
we will consider and justify it by some theoretical considerations. We stick to
the idea of a distance-preserving map and, starting from a flat map (discussed in
section 3), we incrementally modify the landscape to improve the overall error
(section 4). Some results and examples are provided in section 5.

2 MDS Representation on a Landscape

We assume that a p-dimensional data set X = {x1, x2, ..., xn} ⊆ R
p is given.

By d(v, w) we denote the Euclidean distance ‖v−w‖. In MDS each of the high-
dimensional data points xi has to be mapped to a low-dimensional representative
yi. The projection of X is denoted as Y = {y1, y2, ..., yn} ⊆ R

q where 1 ≤ q < p
(typically q ∈ {2, 3}). A perfect distance-preserving projection of X to Y would
keep the distances dx

ij := d(xi, xj) of the high-dimensional space identical to the
distances dy

ij := d(yi, yj) of the projected data objects, that is, dx
ij = dy

ij holds. A
perfect projection is, however, impossible except for a few trivial cases. Therefore,
MDS seeks to minimize the error introduced by the projection (|dx

ij − dy
ij | for all

i, j). Common objective functions are [7]:

E1 =
1

∑n
i=1

∑n
j=i+1

(
dx

ij

)2

n∑

i=1

n∑

j=i+1

(
dy

ij − dx
ij

)2
, (1)

E2 =
n∑

i=1

n∑

j=i+1

(
dy

ij − dx
ij

dx
ij

)2

, (2)

E3 =
1

∑n
i=1

∑n
j=i+1 dx

ij

n∑

i=1

n∑

j=i+1

(
dy

ij − dx
ij

)2

dx
ij

. (3)



Landscape Multidimensional Scaling 265

Usually the selected stress function is minimized by a numerical optimisation
method such as gradient descent.

A similar technique that does not use any of the above objective functions
is the self-organizing map (SOM) [6]. The data objects are assigned to cells
on a regular grid such that data objects in neighbouring cells are similar to
each other. Traditionally, the colouring of the cells is used to provide additional
information about the similarity to data in adjacent cells. In [9] an extension has
been proposed that encodes information about the data density as well as the
distance between cell data in a landscape, the so-called U∗-matrix. The distance
of neighbouring cells is reflected by the landscape, but for non-adjacent cells no
conclusions can be made.

In this work we stick to a distance-preserving map (just as with MDS), but we
want to use the landscape as an additional parameter influencing the perceived
distance between data objects placed in the landscape. With a real map the
true travel distance depends on the chosen path: we may circumvent or climb
a mountain, for instance. To be of immediate use no tedious path optimisation
should be necessary to understand the visualisation, therefore only the straight
connection between the points is considered relevant for their distance. If the
straight line between two projected points is shorter than the distance between
their high-dimensional originals, we may introduce obstacles on the path to
increase their map-distance. From the number and height of the obstacles a user
gets a better impression of the true distance.

A landscape MDS (LMDS) may be constructed in the following way: We seek
for an initial distribution of data objects on a flat plane guaranteeing that

dy
ij ≤ dx

ij (4)

holds for all i, j ∈ {1, . . . , n}. This condition is motivated by the fact that moun-
tains can only increase the distances. Then we place rectangular or cylindrical
mountains (parameterized by location, size and height) in the landscape such
that the difference |dy

ij − dx
ij | is reduced. In our simple first model a mountain

increases the path length by twice the height of the cylindrical mountain, corre-
sponding to climbing the mountain and descending to the base level again.

Can such a landscape MDS deliver better results than traditional MDS? Yes,
it can, at least in theory. We place the projections yi on a circle such that the
distances are no larger than the original ones and no three points are collinear
(figure 1, left). We ensure dy

ij ≤ dx
ij by making the circle sufficiently small. Then

introduce cylindrical mountains mij (i < j) such that each mountain mij is
crossed only by the line connecting the two points yi and yj (figure 1, right).
Choosing hij = (dx

ij − dy
ij)/2 reduces the error of the distances to zero in the

landscape.
The drawback of this solution is obviously that in the worst case n(n− 1)/2

very narrow cylindrical mountains for n data objects have to be introduced.
The resulting landscape is very different from common maps and thus hard to
interpret. We will develop a better alternative in the following sections.
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Fig. 1. An optimal solution with zero error

3 Initialisation of LMDS

As mentioned above, landscape MDS (LMDS) must be initialized such that the
constraints (4) for the distances are fulfilled. There are a number of approaches
which can be used for the initialization of an LMDS map. To choose the best ini-
tialization strategy, we performed a comparison of the following four approaches:

(a) Projecting the data to the plane by PCA approach automatically satisfies
the constraint (4) of smaller distances.

(b) The second approach enhances the first one by shifting points within al-
lowed intervals after the PCA projecting. The intervals are computed such
that the error function (3) is minimized and the violation of the constraints
(4) is avoided. The interval computation involves the golden section search
algorithm.

(c) Classical MDS which violates the constraint of smaller distances.
(d) MDS with constraints on distances using a Lagrange function which is de-

fined as

L = E3 +
n−1∑

i=1

n∑

j=i+1

λij

(
dy

ij − dx
ij

)
. (5)

Although no analytical solution of (5) exists, the Lagrange function can be
optimized iteratively using the Arrow-Hurwitz-Uzawa algorithm [2]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ
(k+1)
ij = max

{
0, λ(k) + α(k)

(
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)}
, i, j = 1, . . . , n
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(k+1)
i = y

(k)
i − β(k) ∂L(y(k), λ(k))

∂yi
, i = 1, . . . , n

0 < α(k) ≤ 1
0 < β(k) ≤ 1

(6)
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Fig. 2. The cube data set

where α(k) and β(k) are the step length parameters. The undetermined La-
grange multipliers λ

(k+1)
ij are equal to zero when the constraints (4) are

satisfied, and become positive when the constraints are violated.

To compare the initialization results provided by the different approaches
listed above, we used a number of benchmark data sets: ’Iris’ (4 attributes) and
’Glass’ (9 attributes) from the UCI Machine Learning Repository [1] with 150
and 214 data objects, respectively, as well as the two three-dimensional data
sets ’Cube’ and ’Coil’ (see the left images in figures 2 and 3, respectively.) with
360 and 160 data objects, respectively. The results for these data sets provided
by the considered initialization methods are listed in table 1. The number of
iterations required for PCA with shifting was 5, because more iterations did not
significantly improve the results. For constrained MDS with the Arrow-Hurwitz-
Uzawa algorithm, the number of iterations was 5000.

As can be seen from table 1, constrained MDS with the Arrow-Hurwitz-Uzawa
optimisation procedure considerably outperforms the other three approaches
w.r.t. the objective function (3) and avoiding the violation of constraints (4).
So we will use this technique for the initialization of LMDS in the following
section. The important advantage of the procedure (6) are its high speed of
convergence and its low computational costs.

4 Adding Mountains to the Landscape

In the previous section, initialisation strategies were compared that position
the data points on a flat landscape in such a way that the constraints (4) are
(almost) satisfied. Therefore, in the next step, mountains will be introduced that
can only lead to in an increase of the distances of the flat landscape. The effect
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Fig. 3. The coil data set

Table 1. Empirical comparison of the initialisation strategies

Data
set

PCA:

Error (3)

MDS:

Error (3)
Sum of violations
of constraint (4)

PCA with shift-
ing:
Error (3)
Sum of violations
of constraint (4)

Arrow-Hurwitz-
Uzawa MDS:
Error (3)
Sum of violations
of constraint (4)

Iris 0.0097589
0

0.00632271946452
453.0641

0.009536704494
0

0.0090821097634
3.085490787E-4

Coil 0.0768078
0

0.0546562810427
8805.257

0.076738333
0

0.0746009358153
8.20138002E-4

Glass 0.170403
0

0.03577761897878
4176.65

0.10563177615
0

0.080108479955
7.677778033E-4

Cube 0.070009
0

0.0479180387553
1669.474

0.067812491266
0

0.0652975311919
7.673804646E-4

of a cylindrical or rectangular mountain of height h on the distance between two
points i and j is

dnew
ij = dij + ξijh, ξij ∈ {0, 1, 2} . (7)

Figure 4 shows the possible cases and the values for ξij .
When we add mountains to the landscape, we have to decide where to place

the mountains (the underlying rectangle for a rectangular mountain and centre
point as well as the radius for a cylindrical mountain), determine their heights
and also the number of mountains we want to introduce. Again, there is no
analytical solution to this problem. The objective function is not even contin-
uous according the coefficients ξij . Therefore, we apply an evolution strategy (see
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ξij = 2 ξij = 1 ξij = 0

Fig. 4. Effects of a rectangular mountain on the distance between two points

for instance [3]) for positioning the mountains. The height of a mountain is not
considered as a parameter of the evolution strategy, since the optimal height for
a mountain with a fixed location can be obtained from ∂E3

∂h = 0, leading to

h = −

∑n
i=1

∑n
j=i+1

dy
ij−dx

ij

dx
ij

ξij

∑n
i=1

∑n
j=i+1

ξij

dx
ij

ξij

. (8)

There are two strategies to add mountains to the landscape. Mountains can
be introduced to the landscape one by one or a fixed number of mountains
is added simultaneously. In both cases, the intersection of mountains must be
avoided. Otherwise, (7) would not be valid anymore and the computing of the
revised distances would become quite complicated. It is, however, allowed that
one mountain is placed completely on top of another, as long as there is not
just a partial overlap of mountains. When k moutains are added simultaneously
and not one by one to the landscape, the optimal heights of the mountains can
no longer be computed from (8). The heights are given by the solution of the
following system of linear equations.

k∑

l=1

hl

n∑

i=1

n∑

j=i+1

ξijl

dx
ij

ξijp = −
n∑

i=1

n∑

j=i+1

dy
ij − dx

ij

dx
ij

ξijp (p = 1, . . . , k) (9)

The solution of this system of linear equations can lead to negative heights.
Negative heights as well as the avoidance of overlapping mountains is enforced
by a dynamic penalty function to the evolution strategy that assigns a low fitness
to solutions with intersecting mountains. The penalty function for cylindrical
mountains is described here. The corresponding penalty function for rectangular
mountains can be defined in a similar way. Two cylindrical mountains with radius
ri and rj overlap when the distance δ(ij) between the midpoints of their circles
satisfies

δ(ij) ≤ ri + rj . (10)

If in this case either δ(ij) + ri ≤ rj or δ(ij) + rj ≤ ri holds, then one of the
mountains lies completely on top of the other and no penalty is required. In case
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a penalty is needed, it is defined as gij = ri + rj − δ(ij), otherwise gij = 0 is
chosen. The overall penalty is given by

pen =
k∑

i=1

−min{hi, 0} +
k−1∑

i=1

k∑

j=i+1

gij . (11)

The penalty function is increased with the number of generations of the evo-
lution strategy, so that in the end solutions with intersecting mountains have
no chance to survive due to the bad fitness value. The overall fitness is given
equation (3) plus

f(t) · pen (12)

where f(t) is a positive and increasing function. t refers to the generation number
of the actual population of the evolution strategy.

In order to speed up the computations, the determination of the ξij values
for rectangular mountains is carried out based on the Cohen-Sutherland line-
clipping algorithm (see for instance [5]) used in computer graphics. Line clip-
ping refers to the problem of finding out whether a line has to be drawn in a
rectangular window on the computer screen, so that it is necessary to deter-
mine, whether the line is completely inside, completely outside or partly inside
the window. This corresponds exactly to the problem of finding out whether a
connecting line between two points is affected by a rectangular mountain, as it
is illustrated in figure 4.

For cylindrical mountains the same strategy is used by applying the Cohen-
Sutherland line-clipping algorithm to the bounding square of the circle associated
with the cylindrical mountain. In case a line intersects the bounding square, it is
still necessary to test whether it intersects also the circle. But at least for lines
outside the bounding square, we know ξij = 0.

Introducing mountains in a greedy manner step by step with the evolution
strategy turned out to be faster than adding mountains simultaneously. However,
the results of the latter strategy were slightly better in our experiments.

5 Examples

In this section we present the results of numerical simulations of the proposed
LMDS visualisation method. We used five data sets: the first four are the arti-
ficial data sets ’Cube’, ’Pyramid’, ’Coil’ and ’Ring’. Two of them were already
mentioned in section 3. The third data set is a real-world data set from a waste-
water treatment (WWT) plant in Germany. The results are shown in figures 2,
3, 5, 6 and 7, respectively. Note that the 3D-effect is better, when the images can
be rotated or zoomed. The four artificial data sets are all three-dimensional. On
the left-hand side of each figure, the original data set is shown, on the right-hand
side the LMDS result.

For the WWT plant, measurements of 15 process variables over a period of six
years were available. The main task was to visualize the year-to-year variations
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Fig. 5. The pyramid data set

Fig. 6. The ring data set

in the plant. We did not use any information on time or date for the generation
of the visualisation.

The 3D-diagram generated from our method shows a clear separation of the
year 1996 which is marked by bigger yellow spheres. This is confirmed by our
knowledge of changes in the process that were implemented in the year of 1997.

Table 2 shows a comparison of the error values for classical MDS and for
LMDS for the objective function (3). The error value of LMDS is not always
better. The main reason is the greedy strategy to start with an MDS initiali-
sation with the constraints described in equation (4). It seems that the restricted
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Fig. 7. The wastewater treatment plant data set

Table 2. Comparison of MDS to LMDS

Error according to equation (3)
Data set MDS LMDS
Pyramid 0.02028127 0.00872146

Ring 0.02551469 0.02430803

Cube 0.04791804 0.03802418

Coil 0.05465628 0.05809677

Wastewater treatment plant 0.07254737 0.08211769

MDS gets stuck in a local minimum easier and the introduction of mountains
afterwards cannot always compensate this effect completely.

6 Conclusions

We have introduced a new method that exploits a landscape for multidimen-
sional scaling instead of a flat plane. In principle, it is possible to position the
data points on the landscape in such a way that the distances in the original
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Fig. 8. The problem of fitting a lower into a higher dimensional space

high-dimensional data space are preserved exactly. However, this will lead to
extremely complicated and non-intuitive landscapes.

Simplified landscapes allowing only a strictly limited number of mountains
suitable for real visualisation purposes cannot guarantee this exact represen-
tation of the distances anymore. However, shortening distances instead of in-
creasing them by mountains might lead to better solutions. The reason for this
problem can be seen in figure 8. The typical way to fit a two-dimensional plane
into a higher dimensional space would be to fold it like a towel, which would
lead to larger distances instead of smaller distances as illustrated in figure 8. But
mountains in LMDS can only increase, but not decrease distances and concepts
like ’wormholes’ that would be needed to shorten distances are not very suitable
for visualisation purposes.
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Abstract. Part-of-Speech tagging, the assignment of Parts-of-Speech
to the words in a given context of use, is a basic technique in many
systems that handle natural languages. This paper describes a method
for supervised training of a Part-of-Speech tagger using a committee of
Support Vector Machines on a large corpus of annotated transcriptions
of spoken Dutch. Special attention is paid to the decomposition of the
large data set into parts for common, uncommon and unknown words.
This does not only solve the space problems caused by the amount of
data, it also improves the tagging time. The performance of the resulting
tagger in terms of accuracy is 97.54 %, which is quite good, where the
speed of the tagger is reasonably good.

Keywords: Part-of-Speech tagging, Support Vector Machines

1 Introduction

In a text, every word belongs to a certain word class, such as noun or verb.
There are many more classes and classes can often be subdivided into smaller
classes, for example by taking tense, number or gender into account. Some words
belong only to a single word class. For example the word jaar (year), which is
strictly a singular noun. Many words, however, belong to more than one word
class, the so-called ambiguous words. The actual class of such a word depends on
the context. The more common a word is, the more likely it is to be ambiguous.
In the Corpus Gesproken Nederlands (CGN - Spoken Dutch Corpus) a large
morpho-syntactically annotated corpus that we used for the experiments in this
paper, the percentage of ambiguous words related to the number of occurrences
in the corpus is shown in Figure 1 (details of this corpus are given in Section 1.1).
The data points are an average of the percentage of ambiguous words around
that frequency. Part-of-Speech (PoS) tagging, or word class disambiguation, is
the process of finding out the right word class for these ambiguous words. The
result is then added as a label or tag to the word. PoS tagging is often only one
step in a text processing application. The tagged text could be used for deeper
analysis, for example for chunk parsing or full parsing. Because the accuracy of
the PoS tagging greatly influences the performance of the steps further in the
pipeline [1], the accuracy of the PoS tagger is very important.

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 274–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. The average percentage of ambiguous words related to the number of occur-
rences in the CGN corpus

Various models for supervised machine learning have been applied to the
problem of PoS tagging; memory based learning [2] , transformation rule based
learning [3], (Hidden) Markov Models. Apart from the overall accuracy, relevant
measures for PoS taggers concern the accuracy of handling unknown words, the
amount of training data required (the learning rate), training time, tagging time,
and the accuracy on different types of corpora. TnT, a trigram HMM tagger by
Brants [4], has shown good results in both accuracy and training time as well as
tagging time.

During the development of the CGN corpus, a number of methods for PoS
tagging have been compared and used for bootstrapping. Zavrel and Daelemans
[5] report on a number of PoS taggers trained and tested on the CGN. Canisius
and van den Bosch [1] used a subset of the CGN for learning system to find basic
chunks (i.e. sentential phrases, such as noun phrases and prepositional phrases).

The aim of this research is to find the appropriate ingredients for constructing
a PoS tagger for spoken Dutch, using Support Vector Machines (SVMs) [6], a
classification method well known for its good generalization performance [7].

1.1 Spoken Dutch Corpus (CGN)

The Spoken Dutch Corpus (Corpus Gesproken Nederlands, CGN) [8] is a database
of contemporary spoken Dutch. It consists of almost 9 million transcribed words
of spoken Dutch, divided into 15 different categories, cf. Table 1. Of these words,
around two thirds originate from the Netherlands, the remaining one third from
Flanders. The entire CGN is annotated with a large set of PoS tags. The full set
consists of 316 different tags, which denote many different features of a word class.
An example of such a tag is N(soort,ev,basis,zijd,stan), meaning noun, sort name,
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Table 1. The 15 different categories of the Dutch Spoken Corpus (CGN)

Category Type Size in words

A Face to face conversations 2626172

B Interview with teacher Dutch 565433

C Phone dialogue (recorded at platform) 1208633

D Phone dialogue (recorded with mini disc) 853371

E Business conversations 136461

F Interviews and discussions recorded from radio 790269

G Political debates, discussions and meetings 360328

H Lectures 405409

I Sport comments 208399

J Discussions on current events 186072

K News 368153

L Comments on radio and TV 145553

M Masses and ceremonies 18075

N Lectures and discourses 140901

O Text read aloud 903043

singular, basis (not diminutive), not neuter, standard case (not dative or genitive).
A full explanation of the features and their use can be found in [9]. Many of the
pronouns contain even more features, up to nine. This subdivision is sofine-grained
that many tags occur only a few times in the entire corpus. There are even 19 tags
that occur only once. Although it is possible to discard all the subclasses and use
only the main class, this would leave us with a set of only 12 tags (including LET
and SPEC, for punctuation mark and special respectively). A tag set of this size
is much smaller than what is commonly used in PoS tagging. Discarding all these
features also reduces the value of the tagged data to further processing steps. To
overcome this problem, the syntactic annotations use a different tag set, consisting
of 72 tags. These tags are a reduced version of the full tag set, making it more
suitable for machine learning. Only about ten percent of the corpus is tagged using
these tags, but the tags can be automatically derived for the rest of the corpus
using a set of simplification rules and the full tags. Table 2 shows an overview of
this tag set. The challenges of using SVMs on such a large corpus as the CGN is
the size of the training set which requires a separation of the corpus, and to find
a workable representation of the input. We will show in this paper how we solved
these problems by decomposition and by using a committee of modular SVMs.

2 Design of the SVM Tagger

Several successful SVM PoS taggers can already be found in the literature, see
for instance the work of Giménez and Márquez [10]. They constructed accurate
SVM PoS taggers for English and Spanish . In their approach a linear kernel
was used. Nakagawa, Kudo and Matusmoto [11] constructed a polynomial kernel
SVM PoS tagger for English. However both of the above approaches are applied
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Table 2. Tags in the medium-sized tag set of size 72. The items in the second column
are the main classes and correspond to the reduced tag set of 12 tags.

Tag numbers Part-of-Speech Tag Tags in the CGN corpus

1 . . . 8 Noun N1, N2, . . ., N8

9 . . . 21 Verb WW1, WW2, . . ., WW13

22 Article LID

23 . . . 49 Pronoun VNW1, VNW2, . . ., VNW27

50, 51 Conjunction VG1, VG2

52 Adverb BW

53 Interjections TSW

54 . . . 65 Adjective ADJ1, ADJ2, . . ., ADJ12

66 . . . 68 Preposition VZ1, VZ2, VZ3

69, 70 Numeral TW1, TW2

71 Punctuation LET

72 Special SPEC

to written text only and are applied to a corpus of a much smaller size than the
CGN corpus.

In this research we opted for a single pass left-to-right tagger using a sliding
window consisting of 7 consecutive words in which the tagger needs to determine
the tag of the middle word; word 4.

The first stage in the design is the transformation of words to numerical values.

2.1 Input Coding

As stated above the input of the tagger consists of a sliding window of 7 words.
Each of the 7 words in this window is encoded based on the coding description
given in Table 3. Many of the features in Table 3 are so-called “1-out-of-N”
encodings. For example the word encoding is a vector of length equal to the size
of the lexicon with only a 1 at the index of the word. Special attention has to be
paid to unknown words, words that have no tag frequency data available. For
context words, the average relative frequencies for unknown words are used, cf.
Figure 2. It follows from Figure 2 that only a few tags have unknown words. For
the unknown word to be tagged, all frequency values are set to zero.

It should be stated that in the testing phase the PoS tag for the preceding
words is the tag generated by the SVM PoS tagger (the tagger is a left-to-right
tagger).

2.2 Training and Test Data

From the CGN data set a total of 11 sets was constructed. The first sentence
of the data set was put in set0, the second sentence in set1, etc. Of these sets
set0 was used for testing and set1 up to set10 for training. Using the input
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Table 3. Input coding vector for the SVMs. The input is a sliding window of 7 words,
w1w2w3w4w5w6w7, and w4 is the word to be tagged (PoST means Part-of-Speech
Tag).

Type Used for Coding

PoST w1, w2, w3 “1-out-of-N”

relative tag frequencies w4, w5, w6, w7 vector of relative tag frequencies

suffix w4 “1-out-of-N”

word w1, . . ., w7 “1-out-of-N”

capitalization w1, . . ., w7
0 for no capitals,

1 for the first letter,
2 for more then one letter

length w1, . . ., w7 single number

number w1, . . ., w7

0 if word does not contain number,
1 if it contains at least one number,
2 if the first character is a number,

3 if all characters are numbers

suffix w4 “1-out-of-N”

PoST bigrams w1, w2, w3 “1-out-of-N”

PoST trigrams w1, w2, w3 “1-out-of-N”

Reduced PoST bigrams w1, w2, w3 “1-out-of-N”

Reduced PoST trigrams w1, w2, w3 “1-out-of-N”

word bigrams w1, w2, w3, w5, w6, w7 “1-out-of-N”

coding described in Section 2.1, this resulted in a training set of more than 2
Gigabytes, which is more than the system could handle. One option is to reduce
the training set by taking a random sample, but this increases the probability
of an unknown word during testing and hence the performance of the tagger
will decrease. Therefore we opted for a modular approach which allows for a
decomposition of the training data.

2.3 Decomposing the SVM Part-of-Speech Tagger

A committee of SVM taggers was designed in order to decompose the overall
tagger such that for each tagger there is a reasonable amount of training data.
Recall that the input of the tagger is a window of size 7; it consists of 7 consec-
utive words in the sentence, say w1w2w3w4w5w6w7 and w4 is the word to be
tagged.

If w4 is a common word, a word occurring often (more than 50 times) in the
training data, then there is enough training data for each separate word. Hence
for each common word a single multi-class SVM is trained. For each such SVM
the relative tag frequency of w4 is constant and can be discarded from the input
coding.

If w4 is an uncommon word then a SVM is selected based on the reduced
tag of w3. Since there are only 12 reduced tags, this results in enough but not
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too much training data. So 12 separate multi-class SVMs are trained for the
uncommon words.

If w4 is an unknown word then again a SVM is selected based on the reduced
tag of w3, resulting in 12 multi-class SVMs for the unknown words. Recall that
if w4 is an unknown word then the relative tag frequency is set to zero and thus
constant. Hence the relative tag frequency of w4 can be discarded from the input
coding for these SVMs.

The selection of which tagger of the committee should classify the data is based
on the properties of the word to be tagged. Given the input w1w2w3w4w5w6w7
the selection procedure is as follows:

if w4 = common word then
select SVM-common(w4)

else-if w4 = uncommom word then
select SVM-uncommon(reduced tag(w3))

else w4 is unknown word
select SVM-unknown(reduced tag(w3))

The different SVMs were implemented and trained using the LIBSVM toolkit,
[12].

2.4 Kernel Optimization

Based on the findings in Table 4 it was decided to use a 3rd order polynomial
kernel for all the SVMs. The 3rd order polynomial has the highest performance
on the uncommon word class and among the best performance on the other
classes.
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Table 4. Tagging accuracy (in %) of the different kernels on the ambiguous words in
the different classes; common, uncommon and unknown. In the overall performance
the classification of non-ambiguous words is also taken into account. Hence the overall
performance is higher than the average performance on the ambiguous components.
This accuracy is based on a training set of size 10000 for common words and of size
50000 for uncommon and unknown words.

Kernel type common uncommon unknown overall (all words)

rbf 97.65 87.42 54.14 97.81

polynomial; 2nd order 97.67 87.14 53.47 97.82

polynomial; 3rd order 97.66 87.64 53.47 97.82

linear 97.65 87.25 52.90 97.81

3 Test Results

It can be seen from Table 4 that the performance on unknown words is very low,
around 53%. Although there are not many unknown words due to the size of the
CGN corpus, this performance on unknown words reduces the overall tagging
performance. Hence a reasonable increase in performance can be gained if one
succeeds in handling unknown words in a more intelligent way. This would also
lead to better results when using the tagger on Dutch texts outside the CGN
corpus.

The main difference between unknown words and known words is that for
unknown words no tag frequency is available.

3.1 Improving Unknown Word Performance

Since many words in Dutch are compounds it is an option analyze the compound
structure of unknown words. The final compound is the head part of the com-
pound - the head noun of fietspomp (bike pump) is pomp - we will assume that
the tags of the last compound gives us the best indication for the PoS tags of the
whole word. Since there are word-ending morphemes such as lijk in uitzonderlijk
that are equal to a Dutch noun, more sophisticated morphological analysis could
be necessary. Different scenarios were tested for several compound analyzers.

The final result of the tests was that a combined approaches was the best; if
a word can be compounded using the strict compound analyzer (first part of the
compound must be in the lexicon) then the strict compound analyzer is applied,
otherwise the relaxed compound analyzer (first part of the compound does not
need to be in the lexicon) is applied. Both use the average tag frequencies over
other compounds with the same second part as tag frequency for the compound.
The performance of using this combination of compound analyzers can be found
in Table 5. The coverage of this method is identical to the coverage of the relaxed
compound analyzer and the tagging performance is in between the performance
of the strict and relaxed compound analyzer. But the overall performance is
higher, resulting in a performance increase of almost 14%.
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Table 5. The performance of using the combined compound analyzer

coverage (%) accuracy on compounds accuracy on unknown words

62.23 74.46 69.27

4 Detailed Performance Evaluation

After investigating several options for kernels and handling unknown words the
final SVM based committee of PoS taggers was constructed. For all SVMs in
the committee a 3rd degree polynomial kernel was used and the input coded as
described in Section 2.1. Moreover the combined compound analyzer was used.
Using the compound analyzer resulted in the following selection procedure for
the appropriate SVM.

if w4 = common word then
select SVM-common(w4)

else-if w4 = uncommom word then
select SVM-uncommon(reduced tag(w3))

else-if compound analysis w4 succeeds % w4 is unknown word
select SVM-uncommon(reduced tag(w3))

else % w4 is unknown word
select SVM-unknown(reduced tag(w3))

This committee was tested on the test set0 resulting in an overall performance
of 97.52%, cf. Table 6. The confidence interval can be estimated using the theory
described in Chapter 14 of Alpaydin [13], resulting in a 95% confidence interval
of ±0.03% and 99% confidence interval of ±0.04% for the overall performance.
Canisius and van den Bosch, [1] applied a memory based PoS tagger to the CGN
corpus. They achieved an overall performance of 95.96% which is significantly
lower than our performance.

Table 6. Tagging performance (in %) on the test set of the final committee of taggers.
The overall performance also includes the non-ambiguous words.

common uncommon unknown overall (all words)

97.28 88.40 70.00 97.52

The final tagger was also applied to the different categories in the CGN corpus,
cf. Table 1. The performance on these categories can be found in Table 7. The test
was performed on a balanced (with respect to the different categories) subset of
set0. Therefore the results differ a little bit from the performance results in Table 6,
which is based on the whole set0. The largest variation is in the unknown word
performance with a minimum of 62.07% on category M (Masses and ceremonies)
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Table 7. Final tagging performance (in %) on the different categories (cf. Table 1) in
the CGN. The performance are based on a balanced subset of set0.

categories common uncommon unknown overall (all words)

A 97.25 85.52 69.80 97.55

B 96.76 85.01 74.04 97.21

C 97.94 88.06 65.97 98.15

D 97.90 88.72 65.49 98.13

E 97.37 83.04 68.52 97.67

F 96.78 87.87 72.09 97.05

G 96.93 88.05 72.41 96.63

H 96.93 89.53 70.51 97.43

I 97.31 92.99 68.72 97.48

J 97.13 91.10 82.43 97.45

K 96.76 90.45 74.44 96.89

L 96.02 86.88 73.06 96.19

M 96.28 75.00 62.07 96.03

N 95.85 88.22 74.29 96.19

O 96.66 87.91 71.64 96.69

mean 96.92 87.22 71.03 97.12

variance 0.36 17.45 22.77 0.45

and a highest unknown word performance of 82.43% on category J (Discussions
on current events).

The tagging speed was around 1000 words/sec. which is much higher than the
20 words/sec of the tagger developed by Nakagawa et all. [11].

Also a preliminary evaluation was performed with the well-known TnT tagger
[4]. The TnT tagger was trained and tested on a subset of this corpus, using the
same tag set. The performance of the TnT tagger was around 96.0%. A more
thoroughly evaluation was performed with a Neural Network based PoST. The
performance if this tagger was 97.35% on set0, which is also significantly lower
than the 97.54% of the SVM based tagger.

5 Conclusions

The main challenge of this research was to apply SVM based PoS taggers to
large corpora, especially the CGN corpus. The CGN corpus consists of around 9
million words and is the largest corpus of spoken Dutch. In order to reduce the
training load a committee of SVM was designed and trained. The appropriate
SVM in the committee is selected on bases of simple features of the word to be
tagged and the preceding word.

The developed committee of SVMs was tested on a test set consisting of
around 1 million words. The overall tagging performance was 97.52% with a
99% confidence interval of ±0.04%, cf. Table 6. This result is significantly higher
than the memory-based PoS tagger developed by Canisius and van der Bosch
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[1], which has a tagging performance of 95.96%. Also the designed SVM tagger
outperforms the TnT tagger, which has a performance of around 96%, and a
Neural Network based tagger with 97.35% performance. Moreover the developed
tagger has a reasonable speed of 1000 words/sec.

One of the interesting ingredients in the developed tagger was the use of
compound analysis to boost the unknown word performance. Using compound
information resulted in an increase of almost 14% on unknown words. The lowest
unknown word performance is 62.07% on category M (Masses and ceremonies)
and a highest unknown word performance of 82.43% on category J (Discussions
on current events).
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10. Giménez, J., Márquez, L.: SVMTool: A general POS tagger based on support
vector machines. In: Proceedings of the 4th International Conference on Language
Resources and Evaluation (LREC) (2004)

11. Nakagawa, T., Kudo, T., Matsumoto, Y.: Unknown word guessing and part-of-
speech tagging using support vector machines. In: Proceedings of the Sixth Natural
Language Processing Pacific Rim Symposium, pp. 325–331 (2001)

12. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001),
Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm

13. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Towards Adaptive Web Mining: Histograms and

Contexts in Text Data Clustering

Krzysztof Ciesielski and Mieczys�law A. K�lopotek

Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, 01-237 Warszawa, Poland
{kciesiel,klopotek}@ipipan.waw.pl

Abstract. We present a novel approach to the growing neural gas (GNG)
based clustering of the high-dimensional text data. We enhance our Con-
textual GNG models (proposed previously to shift the majority of calcula-
tions to context-sensitive, local sub-graphs and local sub-spaces and so to
reduce computational complexity) by developing a new, histogram-based
method for incremental model adaptation and evaluation of its stability.

1 Introduction

New visual Web clustering techniques (like WebSOM ofKohonen et al . [11]) target
at creating multidimensional document maps in which geometrical vicinity would
reflect conceptual closeness of documents in a given document set. Various ex-
tensions to this approach to handle document organization under non-stationary
environment conditions of growing document collections, like adaptive hierarchi-
cal document organization supported by human-created concept-organization [8],
attempts to capture the move of topics, dynamic enlargements of document maps
[5,13]. All these approaches concentrate on pure introduction of the organization
of documents in space spanned by the term dimensions.

In our research project BEATCA [10], we proposed a novel approach, ad-
dressing both the issue of topic drift and scalability. In brief, we introduced the
concept of so-called contextual map. While being based on a hierarchical (three-
level) approach, it is characterized by four distinctive features. To overcome SOM
rigidity, we propose first to use modified growing neural gas (GNG [6]) cluster-
ing technique. The GNG is then projected onto a 2D map, which is less time
consuming than direct WebSOM like map creation. Any other structural cluster-
ing (e.g. artificial immune network approach) can be used instead1. The second
innovation is the way we construct the hierarchy: we split the documents into
(many) independent clusters (we call ”contexts”), then apply structural cluster-
ing within them, and in the end cluster structurally the ”contexts” themselves.
Drastic dimensionality reduction within the independent clusters is gained (as
they are more uniform topically) which accelerates the process and stabilizes it.

1 Contextual aiNet model has also been implemented in BEATCA and proved to be
an efficient alternative for ”flat” models [2].
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The third innovation is the way we apply GNG technique. Instead of the classi-
cal global search, we invented a mixed global/local search especially suitable for
GNG [10]. And the forth point is that we turned to analyzing the structure of
the term dimensions themselves. Roughly speaking, we believe that the profile
of a document cluster should not be characterized alone by the average term fre-
quency (or more generally ”importance”), but rather by the term (importance)
distribution. We approximate these distributions by respective histograms. As
it turn out, such an approach allows for much better fitting of new documents
into clusters, improves clustering performance with respect to external quality
measures (e.g. class purity) and hence can be used as an improved cluster quality
measure itself, as the experimental section will demonstrate.

1.1 Quality Measures for the Contextual Clustering

Clustering is a learning process with hidden learning criterion, intended to reflect
some esthetic preferences, like: uniform split into groups (topological continuity)
or appropriate split of documents with known a priori categorization. A num-
ber of clustering quality measures have been developed in the literature [15,7],
checking how the clustering fits the (hidden) expectations.

However, those widely-used supervised and unsupervised measures are not
sufficient for complete evaluation and comparison of meta-clustering graph-based
models, such as GNG graphs, SOM maps or AIS idiotypic networks. Their major
disadvantages include:

– instead of subgraph or map area, they take into account individual units
(nodes in GNG, cells in SOM, antibodies in AIS), which do not represent
real data cluster; they disregard similarity relationship between units and
their relative locations

– they do not allow fair comparison of models consisting of different number
of units, built in subspaces of different dimensionality (such as individual
contextual models)

First of the two above mentioned problems can be solved by introducing mea-
sures evaluating correctness of the model structure. We proposed such measures
in [2] and [3]. The latter problem can be tackled by measures based on histograms
of distributions the function pondering the terms in different models, different
subspaces and/or different cells. We discuss such approach in this paper.

1.2 Paper Organization

The rest of this paper is organized as follows. In section 2 a novel, histogram-
based vector space representation and its applications are presented. In partic-
ular, section 2.4 describes context adaptation procedure based on histograms.
Section 3 discusses issues of histogram-based contextual models evaluation and
presents experiments on contextual GNG-based model incrementality and sta-
bility. Final conclusions from our research work are given in section 4.
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2 Histograms in Vector Spaces

As has been said in previous sections, the coordinate value referring to the term
ti in the vector dj representing the whole document is equal to the value of
the pondering (term-weighting) function f(ti, dj). This function may ponder the

term globally (like TFxIDF, fti,dj · log
(

N
fti

)
), or locally like the contextual

function fG(ti, dj) = mti,G · fti,dj · log
(

fG

fti

)
, with mti,G =

∑
d∈G(fti,d·mdG)

fti,D·∑d∈G mdG
).2

In the following subsection we will extend this representation by an informa-
tion about the structure of dimensions in the vector space. Subsequently we will
describe possible applications of this information.

2.1 Distributions of the Function Pondering the Terms

Properties of each term can be considered individually (for a single document),
or in the broader context of a given (sub)set of documents D. In the latter
case we can consider the values of the pondering function for a given term t for
each document d ∈ D as observed values of a random variable with underlying
continuous probability distribution. In practical cases the continuous distribution
will be approximated by a discrete one, so that the information about the random
variable distribution for the term t can be summarized as a histogram Ht,D.

Let us consider the document d ∈ D and the pondering function f . We shall
represent the document d by a normalized vector d =

[
f ′

t0,d, . . . , f
′
tT ,d

]
, where

f ′
ti,d

= ‖d‖−1 · fti,d for i = 0, . . . , T . After normalization, all the documents are
located within the unit hypercube [0, 1]T .

For a fixed number Qt,D of intervals of the histogram Ht,D we define the
discretization Δt,D : [0, 1] �→ {0, . . . , Qt,D − 1}, i.e. the transformation of the
normalized pondering function into the index of interval.

In the simplest case it can be a uniform split of the interval [0, 1] into segments
of equal length Δt,D

(
f ′

t,d

)
= �(Qt,D − 1) · f ′

t,d�. An efficient discretization,
however, should take into account the fact, that the pondering function for a
fixed term takes values in only a subset of the unit interval (like in the case of
splitting the set of documents into homogenous subsets, as done in contextual
approach). Optimal discretization should also approximate quantile-based split
of the underlying pondering function distribution.

The next important issue here is the choice of the optimal number of intervals
for the histogram. A too large number of intervals has a few negative implica-
tions, including an excessive memory consumption for storage of histograms and
deterioration of approximation of the continuous probability distribution of the

2 ft,d is the number of occurrences of term t in document d, ft,D is the total frequency
of term t in all documents from collection D, mdG is the degree of document d mem-
bership level in group G (after fuzzy-clustering), mtG is the degree of membership
of term t in group G, fG is the number of documents in group G, ft is the number
of documents containing term t, N is the total number of documents.
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values of the pondering function (compare experiments in section 3.2). This is
especially true for small subsets of the document collection where a single inter-
val may represent just a couple of documents, which implies a high variance of
frequencies in neighboring intervals. One could in this case of course use regular-
ization (smoothening) of histograms, e.g. via weighed averaging, but this would
mean not only an additional computational burden (with incremental learning
multiple repetitions would be necessary), but also, as experiments show, the
histogram based classification results would not be improved.

On the other hand, an underestimation of the number of intervals also neg-
atively influences the quality of histogram based reasoning. With the decrease
of the number of intervals, the information contained in them gets closer to the
pondering function of a given term, and the multidimensional distribution con-
centrates around the weight center (centroid) of the subspace represented by the
set of documents D. In the extreme case of only one interval, the binary infor-
mation of occurrence or non-occurrence of a term in the set D is represented.

For the discretization Δt,D and a fixed interval qi let us define the character-
istic function:

χ
(
Δt,D

(
f ′

t,d

)
, qi

)
=

{
1 if Δt,D

(
f ′

t,d

)
= qi

0 otherwise
(1)

Then we define the value of the interval qi of the histogram Ht,D for the term t
in document collection D as:

Ht,D(qi) =
∑

d∈D

χ
(
Δt,D

(
f ′

t,d

)
, qi

)
(2)

So individual intervals of a histogram HtD represent the number of occurrences
of a discretizedvalue of the pondering function f for the term t in the document col-
lection D. The interval values can be in turn transformed to relative frequencies via
the plain normalization H ′

t,D(qi) = T−1
t,D ·Ht,D(qi), where Tt,D =

∑
i∈Θ Ht,D(qi) is

the total number of documents d ∈ D containing the term t, Θ = {0, . . . , Qt,D−1}.
The frequency distribution approximates the probability distribution of the un-
known variable describing the weight of occurrence of term t in randomly chosen
document d ∈ D. A term not occurring in any document of the collection will be
represented by an ”empty” histogram, in which all intervals and the corresponding
probabilities will have value equal zero.

2.2 Significance of a Term in a Context

With the exponential increase of dictionary size for a document collection, the
most important task is the identification of the most significant terms, most
strongly influencing clustering and classification of documents as well as the
description of the resulting clusters (keywords extraction). Also the impact of
non-significant terms (the number of which grows much more rapidly than the
number of significant ones) needs to be bounded.
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The first stage in differentiating the term significance is the dictionary re-
duction process. It is kind of ”binary” differentiation: non-significant terms are
omitted from further stages of document processing. The dictionary reduction
can be conducted in two phases: the global one and the contextual one.

Beside dictionary reduction (removal of least important terms), introduction
of contextual pondering function [10] leads also to diversification of the signif-
icance of the remaining terms. We are interested also in similar diversification
expressed as a function of features of term histograms. Intuitively, less significant
terms are represented by histograms with the following features:

– high value of curtosis (a histogram with high peaks), which is especially
visible for terms that are frequent and occur uniformly in the document
collection, hence are less characteristic

– the domain (the carrier) of the histogram is relatively ”compact”, having
few intervals with non-zero coordinates meaning low variation of pondering
function values

– non-zero values occur only for intervals with low indices (corresponding to
low values of pondering function)

Dually, the significant terms are those that are not too common, have highly
differentiated values of pondering function (many non-zero intervals), and at the
same time the pondering function values are high (non-zero values of intervals
with high indices).

Therefore we define the significance of a term t in the document collection D
as follows:

wt,D =
∑

i∈Θ ((i + 1) ·Ht,D(qi))
Qt,D · Tt,D

(3)

where Θ = {0, . . . , Qt,D − 1}, Ht,D(qi) is the value of the interval qi of the
histogram Ht,D, and Tt,D is the sum of values of all intervals (i.e. the total
number of occurrences of term t in D). It is normalized: wt,D ∈ [0, 1].

The above measure has the advantage that it can be computed in a fixed time
(if the sums from the nominator and denominator are stored separately), and can
be updated at low computational cost when documents appear and disappear
in a given subspace or context (see also section 2.4).

2.3 Determining the Degree of Membership of a Document to a
Context

A document fits well to a given contextual subspace if the distribution of some
measurable features of term occurrence is typical for the ”majority” of docu-
ments in this space. Generally, we can look here at features like correlations or
co-occurrences of some terms or location-based statistics (e.g. deviance of dis-
tances between repeated occurrences of a term in the document content from
the Poisson distribution).

Qualitative features can also be taken into account, like style characteristics
(dominant usage of a synonym or non-typical inflection) or even features not
directly related to the textual content (e.g. link structure between hypertext
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documents). But in this paper we restrict ourselves to the analysis of frequency
of term occurrence and to a definition of ”typicality” based on histograms of pon-
dering function for individual terms in a given context. Hence we can talk about
an approach similar to statistical maximum likelihood estimation, in which,
based on observed values, we construct a parametric function approximating
an unknown conditional probability distribution f ∝ P (D|Θ). The likelihood
function should maximize the probability of observed data, and on the other
hand it should highly valuate unseen data similar to ones in the training sample
(the ”generalization” capability of the model). We proceed the same way in our
case. A document is considered as ”typical” for which the values of the pondering
function for the majority of terms are frequent ones in the given context.

Additionally, to avoid domination of the aggregated term-based function eval-
uating document ”typicality” by less important (but more numerous) terms, the
aggregation should take into account the formerly defined term significance in a
given context. Therefore, the similarity (degree of membership) of the document
d to the context determined by the document collection D is defined as follows:

mf (d′, D) =

∑
t∈d′ wt,D ·H ′

t,D(qi)
∑

t∈d′ wt,D
(4)

where wt,D is the significance of a term (eq.(3)), H ′
t,D is the normalized histogram

for the term t (see section 2.1), and qi = Δt,D (ft,d′) is the sequential index of
the interval, determined for a fixed normalized pondering function f , context D,
and discretization Δt,D. The function mf (d′, D) takes its values in [0, 1].

It should be noted that the cost of computing the similarity function mf (d′, D)
is O(|d′|), and it is proportional to the number of distinct terms in the document
and equal to the complexity of the cosine measure calculation.

Having determined the similarity of a document to individual contexts in the
contextual model, we obtain the vector of fuzzy memberships of a document
to the contexts, similarly to known methods of fuzzy clustering (e.g. Fuzzy-
ISODATA). In the next section we explain, how such a vector is used to achieve
incremental updates of the contextual GNG model.

2.4 Incremental Adaptation of Contexts

While the topic distribution within the stream of documents is dynamically
changing in time (e.g. some Internet or intranet documents appear, disappear
or have its content modified) also the contextual clustering models have to be
adapted correspondingly. Such adaptation is performed both on the level of
individual documents and the document clusters, represented by GNG cells. So
a new document can be assigned to a context, and within it to a GNG cell.
A modified document may be moved from one GNG cell to another GNG cell,
in the same, or in another context. As a result, cells may not fit their original
GNGs and it may be necessary to move them elsewhere, as a side effect of the
so-called reclassification.

When a single new document is appearing, its similarity to every existing
context is calculated by equation (4) and the document is assigned to its ”most
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similar” context3. Whenever document context is modified, it may eventually be
removed from its previous context and assigned to a new one.

Important aspect of context adaptation is that contextual term importance
measure (eq.(3)) can be efficiently updated as documents are added or removed
from a given context. Constant-time update of the importance of each term t
which appears in document D requires only to keep separately numerator and
denumerator from equation (3) and to update them adequately. Denominator is
increased or decreased by one, while nominator by i + 1, where i is the index
of the updated interval in the histogram Ht,D(qi). Index i is computed by the
discretization Δt,D (ft,d′) (conf. section 2.1).

After any of the contextual GNG models has converged to a stable state, the
reclassification procedure is applied. Each document group is represented by ref-
erence vector within a cell, which can be treated as a pseudo-document dvi . The
similarity of dvi to every other (temporally fixed) context is calculated (eq.(4)).
If the ”most similar” context is different from the current context then the cell
(with assigned documents) is relocated to corresponding contextual model. The
relocated cell is connected to the most similar cell in the new GNG graph.

There is no room to go into details, so we only mention that also the whole
context can be eventually incorporated within some other context, on the basis of
our between-context similarity measure, based on Hellinger divergence. Finally,
we obtain incremental text data meta-clustering model, based both on adap-
tive properties of modified GNG model (within-context adaptation, [3]) and on
dynamically modified contexts, which allows for clustering scalability and adap-
tation also on inter-context level.

3 Experimental Results

To evaluate the quality of incremental GNG-based document processing, we com-
pared it to the global and hierarchical approaches. The architecture of BEATCA
system supports comparative studies of clustering methods at any stage of the
process (i.e. initial document grouping, initial topic identification, incremental
clustering, model projection and visualization, identification of topical areas on
the map and its labeling [10]). In particular, we conducted series of experiments
to compare the quality of GNG, AIS and SOM models for various model initial-
ization methods, winning cell search methods and learning parameters [10,2]. We
have also investigated properties of the contextual representation and its impact
on clustering model convergence [3].

In [3] we argued that the standard clustering quality measures are not suffi-
cient to evaluate all aspects of meta-clustering model such as GNG. We proposed
graph-structure evaluation measure based on comparison of GNG structure with
minimal spanning tree structure. In the next section, we define histogram-based
reclassification procedure, which facilitates evaluation of the contextual model
stability. In section 3.2 we present experimental results on 20 Newsgroups and
3 One could also consider assignment of a single document to more than one context

(fuzzy assignment).
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large sample of ca.100.000 html pages to evaluate impact of contextual approach
on incremental model stability. The scalability study in section 3.3 was based on
a collection of more than one million Internet documents, crawled by BEATCA
topic-sensitive crawler .

3.1 Histogram-Based Reclassification Measures

Each contextual model (as well as subgraph or map area) represents some
topically consistent (meta-)cluster of documents. Traditionally, such a cluster
is represented by a single element (e.g. centroid, medoid, reference vector in
GNG/SOM, antibody in immune model). Alternative representation of a group
of documents have been presented in section 2. It has numerous advantages
such as abandoning of the assumption of spherical shape of clusters and effi-
cient adaptation during incremental learning on dynamically modified data sets.
It also allows for the construction of various measures for subspace clusters
evaluation. Here we focus only on one such measure, evaluating reclassification
properties of contextual groups.

Reclassification aims at measuring stability of the existing structure of the
clustering model (both on the meta-level of contexts and on the level of document
groups in some subgraphs and map areas). Reclassification measures also the
consistency of the histogram-based subspace description with the model-based
clustering. For the fixed clustering structure (e.g. some split of the document
collection into contexts) we can describe each cluster by a set of histograms,
like in section 2.1. Having such histograms built, we can classify each document
to its ”most similar” histogram-based space, like in section 2.3. Finally, we can
investigate the level of agreement between original (model-based) and the new
(histogram-based) grouping.

In the ideal case we expect both groupings to be equal. To assess how far
from ideal agreement two groupings are, we construct contingency table. Since
the group indexes in original and the new grouping are left unchanged, correctly
reclassified objects appear in the diagonal elements of the contingency matrix.
Finally, we can calculate measures traditionally used for evaluation of classifiers
performance (precision, recall, F-statistics, etc.).

3.2 Contextual Clustering Reclassification Quality

In this section we present short summary of contextual clustering stability eval-
uation based on histogram reclassification measure (section 3.1). Two series of
experiments were executed on 20 Newsgroups collection and a sample of 96805
web pages crawled from Polish Internet. We compared the influence of vector
space representation (contextual vs TFxIDF), representation dimensionality re-
duction (number of distinct terms in dictionary) on reclassification results.

In case of contextual representation, the reclassification quality for 20 News-
groups was 19997 of 20000 correctly reclassified documents (almost 100%). Most
of the 119 errors were due to the documents that didn’t contain any signifi-
cant terms after dictionary dimensionality reduction (so they were assigned to
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a ”null” context). What is an interesting result is that reclassification based
on less reduced dictionary (15000 terms left, versus 7363 in former case) led to
significantly worse results (90% correctly reclassified documents). Again, it sup-
ports our claim that the abundance of low-quality terms (exponentially growing)
can overshadow inner clustering structure of documents collection. On the other
hand, introduction of term-importance factor and contextual representation fa-
cilitate reclassification. In case of standard TFxIDF weights only 18567 (93%)
document assignments were correct.

For the collection of 96805 Polish Web pages results were also good. HTML
documents were grouped into 265 contexts of diverse size (from a few to more
than 2500 pages in a single group), so the reclassification task seemed to be
rather tricky. Still, for contextual weights 93848 (97%) pages were reclassified
correctly, versus 89974 (93%) for TFxIDF weights. Dictionary consisted of 42710
terms, selected among more than 1.2 million.

To sum up, we investigated the impact of the number of histogram intervals
on reclassification. Obviously, too low number of intervals had negative impact
(17374 correct answers for 3-interval histograms). However, almost any reason-
ably chosen number of intervals led to high reclassification quality (19992 for 6,
19997 for 10, 19991 for 20, 19956 for 50 and 19867 correct answers for 100 inter-
val histograms). The lower is the number of documents in the collection and the
lower diversity of contexts is, the less intervals in required. Too large number of
intervals can distort histogram shape regularity and aggravate approximation of
the pondering function distribution, since there is not enough documents used
to approximate each interval value.

3.3 Scalability Issues

To evaluate scalability of the proposed contextual approach (both in terms of
space and time complexity), we built a model for a collection of more than one
million documents crawled by our topic-sensitive crawler, starting from several
Internet news sites (cnn, reuters, bbc).

Resulting model consisted of 412 contextual maps, which means that the
average density of a single map was about 2500 documents. Experimental results
in this section are presented in series of box-and-whisker plots, which allows to
present a distribution of a given evaluation measure (e.g. time, model smoothness
or quantization error) over all 412 models, measured after each iteration of the
learning process (horizontal axis). Horizontal lines represent median values, area
inside the box represents 25% - 75% quantiles, whiskers represent extreme values
and each dot represents outlier values.

Starting with the initial document clustering/context initialization via hier-
archical Fuzzy ISODATA, followed by GNG model learning and GNG-to-SOM
projection (model visualization), the whole cycle of map creation process took
2 days. It is impressing result, taking into account that Kohonen and his co-
workers reported processing times in order of weeks [12]. It should also be noted
that the model was built on a single personal computer. As it has been stated
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Fig. 1. Contextual model computation complexity (a) execution time of a single iter-
ation (b) average path length of a document

before, contextual model construction can be easily distributed and parallelized,
what would lead to even shorter execution times.

The first observation is the complexity of a single iteration of the GNG model
learning (Figure 1(a)), which is almost constant, regardless of the increasing
size of the model graph. It confirms the observations from section 3, concerning
efficiency of the tree-based winner search methods. One can also observe the
positive impact of homogeneity of the distribution of term frequencies in doc-
uments grouped to a single map cell. Such homogeneity is - to some extent -
acquired by initial split of a document collection into contexts. Another cause of
the processing time reduction is the contextual reduction of vector representation
dimensionality.

In the Figure 1(b), the dynamic of the learning process is presented. The
average path length of a document is the number of shifts over graph edges
when documents is moved to a new, optimal location. It can be seen that model
stabilizes quite fast; actually, most models converged to the final state in less
than 30 iterations. The fast convergence is mainly due to topical initialization.
It should be stressed here that the proper topical initialization can be obtained
for well-defined topics, which is the case in contextual maps.

The Figure 2 presents the quality of the contextual models. The final values of
average document quantization (Figure 2(a)) and the map quantization (Figure
2(b)) are low, which means that the resulting maps are both ”smooth” in terms
of local similarity of adjacent cells and precisely represent documents grouped
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Fig. 2. Contextual model quality (a) Average Document Quantization (b) Average
Map Quantization
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in a single node. Moreover, such low values of document quantization measure
have been obtained for moderate size of GNG models (majority of the models
consisted of only 20-25 nodes - due to their fast convergence - and represented
about 2500 documents each).

4 Concluding Remarks

We presented a new concept of document cluster characterization via term (im-
portance) distribution histograms. This idea allows the clustering process to have
a deeper insight into the role played by the term in formation of a particular
cluster. So a full profit can be taken from our earlier idea of ”contextual cluster-
ing”, that is of representing different document clusters in different subspaces of
a global vector space. We have also elaborated incremental methods of document
cluster models based both on GNG model properties and histogram-based con-
text adaptation. Such an approach to mining high dimensional datasets proved
to be an effective solution to the problem of massive data clustering. The contex-
tual approach appears to be fast, of good quality and scalable (with the data size
and dimension). Additionally, the histogram-based characterization of document
clusters proved to be a stabilizing factor in creating the clustering structure, and
well suited for document classification. As a side effect, a new internal cluster
quality measure, based on histograms, has been developed.

We believe that the idea of histogram-based subspace identification and eval-
uation can be efficiently applied not only to textual, but also other challenging
high dimensional datasets (especially those characterized by attributes from het-
erogeneous or correlated distributions).
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Abstract. We are concerned with the problem of learning classification
rules in text categorization where many authors presented Support Vec-
tor Machines (SVM) as leading classification method. Number of studies,
however, repeatedly pointed out that in some situations SVM is out-
performed by simpler methods such as naive Bayes or nearest-neighbor
rule. In this paper, we aim at developing better understanding of SVM
behaviour in typical text categorization problems represented by sparse
bag of words feature spaces. We study in details the performance and the
number of support vectors when varying the training set size, the num-
ber of features and, unlike existing studies, also SVM free parameter C,
which is the Lagrange multipliers upper bound in SVM dual. We show
that SVM solutions with small C are high performers. However, most
training documents are then bounded support vectors sharing a same
weight C. Thus, SVM reduce to a nearest mean classifier; this raises an
interesting question on SVM merits in sparse bag of words feature spaces.
Additionally, SVM suffer from performance deterioration for particular
training set size/number of features combinations.

1 Introduction

Classifying text documents into categories is difficult because the size of the fea-
ture space is very high, commonly exceeding tens of thousands. The bag of words
feature space, where each dimension corresponds to the number of occurrences
of the words in a document, is most often used in text classification because
of its wide use in information retrieval and its implementation simplicity. The
number of training documents, which is several orders of magnitude smaller than
the feature space size is another difficulty. The most prominent technique ap-
plied to text classification is linear Support Vector Machines. First introduced
to text categorization by [Joachims, 1998], SVM were systematically included
in subsequent comparative studies [Dumais et al., 1998], [Yang and Liu, 1999],
[Zhang and Oles, 2001] and [Yang, 2003]. Their conclusions suggest that SVM
is an outstanding method for text classification. The paper [Forman, 2003] also
confirms SVM as outperforming other techniques.

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 296–307, 2007.
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However, in several large studies, SVM did not systematically outperform
other classifiers. For example [Davidov et al., 2004], [Colas and Brazdil, 2006],
[Schönhofen and Benczúr, 2006] showed that depending on experimental condi-
tions, kNN or naive Bayes can achieve better performance. In [Liu et al., 2005],
the difficulty to extend SVM to large scale taxonomies was also shown. In
this regard, experimental set-up parameters can have a more important effect
on performance than the individual choice of a particular learning technique
[Daelemans et al., 2003]. Indeed, classification tasks are often highly unbalanced;
the way training documents are sampled has a large impact on performance. To
do fair comparisons between the classifiers, the aggregating multi-class strategy
which generalizes binary classifiers to the multi-class problem, e.g. SVM one-
versus-all, should be taken into account. Better results are achieved if classifiers
natively able to handle multi-class are reduced to a set of binary problems and
then, aggregated by pairwise classification [Fürnkranz, 2002].

For these reasons, we only study situations where the number of documents
in each class is the same and we choose binary classification tasks as the baseline
of this work. Selecting the right parameters of SVM, e.g. the upper bound C,
the kernel, the tolerance of the optimizer ε and the right implementation are
also non-trivial. In text categorization, linear kernel is commonly regarded as
yielding to the same performance than non linear kernels [Yang and Liu, 1999].
Our previous study [Colas and Brazdil, 2006] suggested that large optimizer tol-
erances ε achieved similar performance than smaller ones, whereas training cost
reduced largely as ε was set large. A linear kernel and a large tolerance are used
in this work. We investigate the effect of C, seldomed optimized in text cate-
gorization, when the number of training documents and the size of the bag of
words are varying. Effect of C is observed in terms of performance and through
the nature of the SVM solutions.

In our extensive empirical study, SVM solutions with small C are high perform-
ers but when C nears zero, most training documents are bounded support vectors
with equal weightC. Then, SVM reduces to the nearest mean classifier and optimi-
sation in SVM is superfluous. Consequently, we raised the question whether SVM
really scale-up to large bag of words feature spaces. In addition, SVM suffer from
performance deterioration for particular training set size/number of features com-
binations. It was already described in our previous study and to our knowledge,
SVM was not noted before [Colas and Brazdil, 2006]. Finally, the side effects of
training SVM in a discrete space like the bag of words feature space are discussed.

The outline of this paper is the following. We recall some aspects of SVM,
we describe our methodology and we detail our experimental results. Then, we
consider some related work before doing the concluding remarks.

2 Background on Support Vector Machines and Text
Classification

Support Vector Machines are based on statistical learning theory [Vapnik, 1995].
Its theoretical foundations together with the results obtained in various fields
makes it a popular algorithm in machine learning.
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In text categorization, the vector space is referred to as the bag of words
feature space where each dimension corresponds to the number of occurrences
of words in a document. So let the vector space be Nd where d is the dimension.
The training examples are denoted by xi ∈ Nd with i = 1, ..., N , N being
the training set size. We consider the task of classifying unseen points x into
two classes {−1; +1}. SVM classification function is achieved by ΦSV M (x) =
sign(〈w.x〉 + b) where w are the coordinates of the separating hyperplane and
the scalar b is the plane bias to origin. The hyperplane w is the one which
separates with maximum distance points of the two classes. This concept is
referred to as the geometrical margin γ = 1/2||w||2 and its maximum is searched.
Maximizing the margin γ is equivalent to minimizing ||w||2/2. In the case where
the classes are separable, derivation of SVM hyperplane is formalized by the
following optimization problem:

minimizew,b
1
2 〈w.w〉

subject to yi(〈w.xi〉+ b) � 1
(1)

This primal form depends on the size of the input feature space. The dual form
is obtained by posing the Lagrangian and deriving it according to w and b:

maximizeα

∑N
i=1 αi − 1

2

∑N
i=1

∑N
j=1 yiyjαiαj〈xi.xj〉

subject to
∑N

i=1 yiαi = 0

0 � αi � C, i = 1...N

(2)

The dual form depends on the number of documents and not anymore on the
feature space. It is a desirable property in text classification because the number
of features of the bag of words feature spaces is usually very large. In order
to limit values of Lagrange coefficients αi, an upper bound C is introduced so
that each training document has a maximum contribution when classes are not
linearly separable. In particular, as w =

∑N
i=1 yiαixi and 0 � αi < C:

lim
C→0

||w||2 = 0,

lim
C→0

γ = ∞ (3)

SVM solution interpretation First, we recall that a set of points is convex if the
line segment between any two of its points stays within the set [Strang, 1986]. In
addition, we consider the smallest of those convex sets and we further refer to it
as the smallest convex hull. Thus, the training of SVM on a two classes problem
reduces to the identification of the points that lie on the smallest convex hull
of each two classes, i.e. their boundary. In the case where classes are linearly
separable, the solution of linear SVM is the hyperplane in force equilibrium
between the smallest convex hulls of those two classes.
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The force pressure exerted by the points on the hyperplane position is quan-
tified by the Lagrange multipliers (αi). Thus, the points that are within the
smallest convex hull of their respective classes are set inactive with αi = 0. On
the other hand, active points are those lying on the boundary of each class.
Those points are referred to as support vectors (SV) and they are defined as
any point xi for which αi > 0. The higher is αi, the more it contributes to the
positioning of the hyperplane.

However, when classes are not linearly separable, points may exert high pres-
sure on the hyperplane without ever being on the right side of it. Consequently,
some multipliers may be very large compared to others or even infinite. In order
to limit the individual contribution of the multipliers, the so-called soft margin
is introduced. In a soft margin SVM solution, the multiplier values are upper
bounded by a parameter C, that is the maximal cost that we are ready to pay to
classify a training point well. There are four types of training points; we list and
characterize them by their distance and their contribution to the hyperplane in
the following table.

Type Distance Contribution State Classification
(1) yi(〈w.xi〉+ b) � 1 αi = 0 inactive well classified
(2) yi(〈w.xi〉+ b) = 1 0 < αi < C active, in bound well classified
(3) 0 < yi(〈w.xi〉+ b) < 1 αi = C active, at bound well classified
(4) yi(〈w.xi〉+ b) < 0 αi = C active, at bound misclassified

The concept of sparsity aims at finding the most parsimonious representation
for a problem. In a sparse SVM solution, most of the training points are set
inactive (1). The ones that are active (2,3,4) lie on the smallest convex hull
of each two classes. They are expected to represent the two classes concepts.
In linearly separable problems, there are only training points of types (1) and
(2) (without the bound C). However, most of the problems are not linearly
separable, which means that the linear separation surface will misclassify part
of the training points. Thus, in soft margin SVM, the more a solution has of
bounded SV (3 and 4), the less linearly separable the problem is. In addition, we
remark that only the bounded SV of type (4) are misclassified training points,
in comparison with the bounded SV of type (3) that are well classified. Large
proportion of bounded SV is not desirable because it illustrates the non linear
separability of the problem. However, using non-linear kernels may not show
any improvement if, e.g. training points of distinct classes overlap at the same
location in the feature space. No surface of any complexity can separate well
those overlapping training points.

Settings of text classification. In addition to large number of features, the bag
of words feature space exhibits high levels of sparsity. The majority of the word
occurrences are zero. As the dimensionality of the problem increases, there will
be more training points on the smallest convex hull of the two classes. As an
example, more than 75% of the dual variables are non-zero in the SVM solutions
of [Rousu et al., 2006] in text classification. We also illustrate this phenomenon
through our experiments.
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The concept of force equilibrium between the two classes is formalized by the
constraint:

∑
yi∈{+1} αi =

∑
yj∈{−1} αj , where the sum of the individual training

point forces should remain equal for the two classes. We consider a specific SVM
solution where all the documents are equally weighted and we further refer to
it as the nearest mean classifier solution. Our experiments suggests that the C
parameters yielding to the best performing SVM solutions in high feature spaces,
produce SVM solutions that are similar to the nearest mean classifier. In that
situation, most of the training point share the same weight.

3 Methodology

To investigate whether SVM scale up to large bag of words feature spaces, we
study the nature and the performance of SVM when the number of features
increases and when documents are added to the training set. We characterize
SVM solutions by the Lagrange multiplier values; the number of SV within and
at bound are recorded. We study the effect of the C parameter on the solutions
and we identify the values which yield the best performance. The kernel is not
considered as a parameter in this work because previous studies in text cate-
gorization suggest that linear kernel performs similarly as more complex ones
[Yang and Liu, 1999].

Dimensions of experimentation. We systematically balance the number of train-
ing documents in each class. With respect to the feature space, words are ranked
and then selected by information gain at the start of each new experiment. We
do measurements in coordinates of a two dimensional space determined by series
of exponential values on each axis; 2

i
2+b with i = 1, 2, 3... and b ∈ N; when b = 6

the series start with {90, 128, 181, 256, ...}. Values of C are chosen similarly; 10i

{0.0001, 0.001...1000}.

Evaluation methodology. As in [Yang and Liu, 1999], we adopt the macro av-
eraged F1 measure maF1 = 2×maPrecision×maRecall

maPrecision+maRecall which relates precision and
recall computed in two confusion matrices, interchanging the definition of target
class in the two-class problem. Measure statistics are estimated by 10-fold cross
validation; mean of maF1 and mean of the number of SV at and within bounds.

Corpora. We select two binary text classification problems from our previous
study involving more than 200 tasks [Colas and Brazdil, 2006]. The first task
is Bacterial Infections and Mycoses against Disorders of Environmental
Origin or C01-C21 for short, from Ohsumed-all data set which is a corpora
of medical abstracts classified into 23 cardio vascular disease categories. The
second task is alt.atheism against talk.religion.miscor 20ng for short, from
20newsgroups which is a data set containing 20000 emails taken from 20 usenet
newsgroups. The libbow of [McCallum, 1996] is used to do the preprocessing;
no stemming is performed.
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SVM implementation. We use the libsvm package [Chang and Lin, 2001]. The
ε parameter controling the tolerance of the stopping criterion is set to 0.1 al-
though other smaller tolerances were investigated. While no effect on the per-
formance was observed, this setting significantly reduced the training time.
As we based our experiments on the libbow package in our previous study
[Colas and Brazdil, 2006], by reproducing the learning curves with libsvm we
discard implementation as a source of variability for our conclusions.

4 Experimental Results and Discussion

Figure 1 illustrates the performance behaviour of SVM solutions when experi-
mental settings are varying. The number of training (resp. test) documents in
(a) is set to 1448 (resp. 200) and to 4096 (resp. 547) in (c). In (a), SVM per-
formance is illustrated by classical learning curves when the size of the feature

(a) Learning curves: 20ng. (b) Performance: C = 0�01, C01-C21.

(c) Normalised performance: C01-C21. (d) Performance: C = 100, C01-C21.

Fig. 1. Figure (a), (b) and (d) illustrate that SVM performance generally increases as
the feature space and the training set are increasing. Depending on the C, performance
may show a dip as in (a) around 724 features (20ng) and in (c) around 1448 features
(C01-C21). In addition, (d) illustrates the linear dependency of the dip to the number of
training documents and of features. Finally, (c) shows that the range of best performing
C (in white, contour line 1) reduces towards small C values as the feature space is
increasing.
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space is increasing and for different values of C; the problem is 20ng. Similarly,
the performance pattern of SVM on C01-C21 is illustrated in (c) but this time,
in order to discard the performance variability associated to the bag of word
size, performance is normalised relative to the one of the best C setting for each
number of features. Thus, the contour line labelled 0.94 should be understood as
6% below the performance of the best performing C setting (C = 0.01), whose
contour line is itself 1. In (b) and (d), the performance differences between so-
lutions with small (0.01) and large (100) C is illustrated through the contour
lines, when the number of features and the size of the training set are varying.

Best performing SVM Figure 1 (a) and (c) illustrate the effect of C on the
performance as the number of features is varying. In small feature spaces, i.e.
90-256 in (a) and 11-362 in (c), most C settings perform similarly. However, as
the feature space is further increased, performance varies widely from one setting
to another; for several C settings a performance dip occurs. For larger feature
spaces, very small C values like {0.01, 0.001} are best performing. The relative
difference to the best C setting may be as small as 2-4%, between contour lines
0.96 and 0.98 in (c), but it depends on the classification problem. In (c), the
setting C = 10−4 yields systematically lower performance, because all training
documents have then equal weight, i.e. 100% bounded SV. This will be discussed
in a later paragraph.

Through (a) and (c), C is shown as a parameter to tune to obtain the best
of SVM but most of previous studies use default values of the implementation1.
If C is tuned, the best performances are achieved for the largest feature spaces,
thus making feature selection unnecessary. Finally, (b) and (d) show as expected,
that more training documents yield better performance.

Figure 2 illustrates the nature of SVM solutions for different experimental set-
tings. The number of training (resp. test) documents in (a), (b) and (c) is set to
4096 (resp. 547) on C01-C21. In (a), the multiplier values αi of the ten SVM so-
lutions of the cross validation are normalised by C. Then, they are ordered along
the x-axis by increasing value. The quantiles are in x and the normalised multi-
plier values (αi/C) in y. In (a), the solutions for different C are described when
there are 11585 features, because through Figure 1 we show that feature selec-
tion is unnecessary for SVM. In (b), the proportion of bounded SV is illustrated
when the size of the feature space is varying and for different C values. The
contour lines characterize the proportion of bounded SV. Finally, (c) presents
the variation of the mean of the total number of SV as estimated by the 10-fold
cross validation, when the feature space size is varying and C = 100. The curve
of the total number of SV is decomposed through the number of bounded and
unbounded SV. In particular, we detail SVM solution characteristics for C = 100
in (c) because for such large C, SVM performance displays a dip in Figure 1,

1 As mentionned by a reviewer, SVMLight sets the default value of C according to a
heuristic. Most other SVM implementations have fixed C default values (e.g. WEKA,
libbow and libsvm).
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Fig. 2. In (a), the proportion of bounded SV (αi/C = 1) increases as C diminishes, and
there are only bounded SV for very small C ∈ {10−4, 5× 10−4}. In (b), the proportion
of bounded SV is high for all C (11-362 features), but it decreases for higher feature
space sizes as shown in (c). First, the total of SV follows the decrease in bounded SV
(11-362). Then, the decrease is partially compensated by the appearance of unbounded
SV (362-16384). The total of SV exhibits a dip slightly before 2048 features. In (b), for
very small C = 10−4, 100% of the SV are bounded.

when the number of features matches the number of training documents per
class, i.e. 2048 for a training set of 4096 documents.

Nature of SVM solutions We relate Figure 1 (c) with Figure 2 (b) first. For small
feature spaces (11-362 features), any C setting was previously shown to perform
equally well. In the shade of Figure 2 (b), we now characterize those solutions
as having large proportions of bounded SV with 30 to 100% of the training
points that are bounded SV. As a consequence, those training points also share
equal weight (αi = C). If only the proportions between inactive training points,
bounded and unbounded SV are considered, then those solutions are similar.
This explains partly why the performance of the soft margin solutions for a
large range of C settings yields the same performance, i.e. most of the training
points are equally weighted.
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Besides, training points are located in a countable number of positions because
the bag of word feature space is discrete and sparse. With few selected features
representing the problem, training points of distinct classes will overlap. Thus,
no hyperplane of any complexity can separate those points, they are unseparable.
Their multiplier values tend to infinity; soft margin SVM force them to αi = C
and most SV are bounded. At constant feature space size, when the number of
training documents increases, the overlap effect will accentuate.

In contrary to solutions in small feature spaces where there are mainly bounded
SV, SVM solutions in large feature spaces have mostly unbounded SV as illus-
trated in Figure 2 (c). Furthermore, the number of unbounded SV keeps raising as
the feature space increases. This illustrates that every point tends to define its own,
local, class boundary. Thus, every training point tends to locate on the smallest
convex hull of its class in large feature spaces.

In Figure 2 (c), the number of bounded SV stagnates for any large feature
space. These bounded SV are outliers, i.e. wrongly labelled training points that
lie within the other class concept. Thus, no linear separation classify well those
points. In Figure 1, a possible origin of the performance dip for high C might
relate to those outliers, whose weight is to important compared to regular points.

On Figure 2 (b), when C = 10−4, 100% of the training points are bounded
SV. Selecting a particular number of features, e.g. 11585 features in Figure 2
(a) or any other large feature space (362-16384) in (b), there tend to be 100%
of bounded SV when C lowers. Given the limit value of the geometrical margin,
which tends to infinity as C tends to zero, all training points become active
and fall within the geometrical margin bounds when C lowers. In that situation,
SVM act as the simple nearest mean classifier because all training points are
equally weighted (αi = C), irrespective of their good classification or not.

A performance drop for SVM In Figure 1 (a), we observe a performance dip for
724 features and C ∈ {1, 10, 100, 1000}. In Figure 1 (c), which plots normalised
SVM performance in the second classification task, the dip also occurs around
(1024-2048) features when C ∈ {1, 10, 100, 1000}. Therefore, the dip occurs when
the number of features matches the number of training documents per class, i.e.
724 for 20ng in Figure 1 (a) and 2048 for C01-C21 in Figure 1 (c). On Figure 1 (d)
where C = 100, the performance dip is illustrated by a line that passes through
the origin and that shades off the line. Finally, Figure 2 (a) in association with
Figure 1 (c) when C = 100, illustrate that the performance dip occurs as the
total number of SV exhibits a drop in the same settings.

In our previous study [Colas and Brazdil, 2006], this performance drop ap-
peared on a large number of classification problems. Therefore, the drop is not
specific to a classification problem, although its emphase does. It also does not
relate to the choice of the SVM implementation because analogous behaviour is
observed for both libbow, that was used in [Colas and Brazdil, 2006] and libsvm
that we adopt in this study. We attribute the phenomenon to the decrease in
bounded SV not matching the increase of within bounds SV as the number of
features increases. However, most of the training points become bounded SV as
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C lowers so that there is no transfer between bounded and unbounded SV. Thus,
because most of the training points are already bounded SV, learning curves for
small C are unaffected by the performance dip.

5 Related Work

In [Cristianini and Shawe-Taylor, 2000], it is mentioned that although the maxi-
mal margin classifier does not attempt to control the number of support vectors,
[...] in practice there are frequently very few support vectors. However, in this
empirical study, we illustrate that SVM solution are not sparse in large feature
spaces. A similar observation in text classifiction was made in the recent work of
[Rousu et al., 2006], who observed more than 75% of the dual variables that were
non-zero, i.e. αi > 0. In [Burges and Crisp, 1999] and [Rifkin et al., 1999], SVM
solution properties are analysed in terms of uniqueness and of degeneracy. In
particular, the conditions for which all dual variables are at bound, refered to as
degenerate solutions, are described. In our experiments, we also revealed exper-
imental settings for which every training point is bounded SV and we explained
that they yielded trivial SVM solutions, i.e. nearest mean classifier. Furthermore,
the study of [Mladenic et al., 2004] raises the question whether sparsity of the
feature space is a more reliable parameter in predicting classifier performance
than the number of features. Our experiments confirmed the specificity of the
bag of words and its discrete nature.

6 Conclusion

Based on large-scale experimentation, we systematically described the nature
of SVM solutions in text classification problems when the number of training
documents, the number of features and the SVM constraint parameter (C) are
varying. In order to study SVM performance in equal grounds to other classifi-
cation methods (e.g. kNN and naive Bayes in our previous study), training data
are systematically balanced and only binary classification tasks were considered.

Usually, SVM are expected to produce sparse solutions that should present
good generalization properties. Moreover, SVM execution time, i.e. test time,
depends on solution sparsity, which makes sparsity a desirable property in real
applications with many documents to classify. However, our empirical study
shows that tightly constrained SVM solutions with small C are high performers.
When C lowers, most of the training documents tend to become bounded support
vectors. As every training document has then equal weight, this raises a question
on true merits of the SVM classifier for large bag of word feature spaces.

In fact, when all the training documents have equal weight, SVM solution acts
as the nearest mean classifier. Expressed differently, the nearest mean classifier
is an SVM solution where the individual contribution of all training documents
are set equal (αi = C). In our experiments, we come to that situation when C
nears zero. In addition, training points that fall within the geometrical margin
of the hyperplane are bounded. Thus, as C tends to zero, all training documents
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become bounded SV because the geometrical margin tends to infinity. Letting
C nears zero will, in practice, generate unwanted trivial SVM solutions.

Finally, our empirical study reveals a performance dip of SVM when the num-
ber of features matches approximately the number of training documents per
class. As in other statistical classifiers, the dip may illustrate a peaking phe-
nomenon. To investigate this issue, additional experiments will be carried out
that record both the performance in the training and the test set, to eventually
detect situation leading to overfitting. However, SVM is well known to control
overfitting. Our alternative hypothesis is therefore to relate directly the dip to
the discrete nature of the bag of word, and not SVM itself. We plan to investigate
the dip and to find ways of improving SVM performance by further character-
izing the nature of SVM solutions in text categorization. In reference to the no
free lunch theorem, we do not expect SVM to outperform systematically other
techniques. However, a more complete understanding of the bag of words speci-
ficities and of SVM solutions should reduce the number of problems where SVM
underperform other methods.
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Abstract. Microarrays allow biologists to determine the gene expres-
sions for tens of thousands of genes simultaneously, however due to bi-
ological processes, the resulting microarray slides are permeated with
noise. During quantification of the gene expressions, there is a need to
remove a gene’s noise or background for purposes of precision. This paper
presents a novel technique for such a background removal process. The
technique uses a gene’s neighbour regions as representative background
pixels and reconstructs the gene region itself such that the region re-
sembles the local background. With use of this new background image,
the gene expressions can be calculated more accurately. Experiments are
carried out to test the technique against a mainstream and an alternative
microarray analysis method. Our process is shown to reduce variability
in the final expression results.

Keywords: Microarray, Filtering, Reconstruction, Fourier.

1 Introduction

The invention of the microarray in the mid-90’s dramatically changed the land-
scape of modern day genetics research. The devices allow simultaneous real time
monitoring of expression levels for tens of thousands of genes. One of these so-
called “gene chips” contains probes for an organism’s entire transcriptome. The
different conditions or cell lines render a list of genes with their appropriate
activation levels. These gene lists are then analysed with the application of var-
ious computational techniques, for example clustering [1], or modelling [2] such
that differential expressions are translated into a better understanding of the
underlying biological phenomena.

A major challenge with any real-world data analysis process is how to address
data quality issues effectively. Although microarray hardware is engineered to
very high tolerances, noise (henceforth “noise” and “background” are synony-
mous) will be introduced into the final output slide. This noise can take many
forms, ranging from common artefacts such as; hair, dust and scratches on the
slide, to technical errors like; the random variation in scanning laser intensity or
the miscalculation of gene expression due to alignment issues. Alongside these

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 308–319, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Noise Filtering and Microarray Image Reconstruction 309

technical errors there exist a host of biological related artefacts; contamination
of complementary Deoxyribonucleic Acid (cDNA) solution or inconsistent hy-
bridisation of the multiple samples for example.

Unfortunately, these images are expensive to produce and the current climate
is such that “bad” experiment sets must still be analysed, regardless of their
quality. Whereas such poor images could simply be discarded in other fields, here,
an image must yield some knowledge irrespective of how small. It is common
practice throughout then to implement some form of duplication in-situ such
that correction tasks can take place during downstream analysis. Much work in
the field therefore focuses on post-processing or analysing the gene expression
ratios themselves [1,3,4,5,6,7] as rendered from given image sets, which means
there is relatively little work directed at pre-processing or improving the original
images to begin with [8,9].

Microarray images are full of background signal that is of no real interest specif-
ically to the experimental process. Nevertheless, these artefacts can have a detri-
mental effect on the identification of genes as well as their accurate quantification.
There are many reasons for this, the most critical of which is due to the similar
intensity levels seen between noise and a gene (due to inappropriate DNA binding
sites for example). In this paper, we present an algorithm that attempts to remove
the biological experiment fromthe image. In this context, the biological experiment
consists of the gene spot regions. Put another way; imagine the image is made up of
two separate layers. The bottom layer consists of the glass substrate material upon
which the gene spots are deposited onto to begin with. The top layer on the other
hand consists of the gene spots. Removal of the biological experiment regions is to
clear the top layer such that the hidden regions of the bottom layer can be seen.
In effect, this removal process is equivalent to background reconstruction and will
therefore produce an image which resembles the “ideal” background more closely
in experimental regions. Subtracting this new background from the original im-
age should yield more accurate gene spot regions. The reconstructed expressions
are contrasted to those as produced by GenePix [10] (a commercial system com-
monly used by biologists to analyse images) and O’Neill et al. [9] (one of the first
reconstruction processes implemented to deal with microarray image data).

The paper is organised in the follow manner. First, we formalise the problem
area as it pertains to real microarray image data sets and briefly explain the
workings of contemporary approaches in the next section. Section Three dis-
cusses the fundamental idea of our approach with the appropriate steps involved
in the analysis. In Section Four, we briefly describe the data used throughout
the work then detail and evaluate the tests carried out for the synthetic and
real-world data. Section Five summarises our findings, draws out some relevant
conclusions and defines future considerations and directions.

2 Background

Regardless of the specific techniques used to assist with downstream analysis of
microarray image data, all of them have similarities due to the nature of the
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problem. For example, the techniques require knowledge of a given gene spot’s
approximate central pixel as well as the slide’s structural layout. A boundary
is then defined around the gene spot and background pixels with the median
of these regions taken to be foreground and background intensities respectively.
Then, the background median is subtracted from the foreground and the result
is summarised as a log2 ratio. Other bounding mechanisms include pixel parti-
tioning via histogram [3,11] and region growing [12,13] functions with a detailed
comparison of the more common approaches given in [8]. The underlying as-
sumption for these mechanisms is that there is little variation within the gene
and background regions.

Unfortunately, this is not always the case as seen in Fig. 1a generally, which
depicts a typical test set slide (enhanced to show gene spot locations) with a
total of 9216 gene regions on the surface and measuring ∼5000×2000 pixels. A
good example of the low-level signal produced in the image can be seen in the
close-up sections, where problems such as missing or partial gene spots, shape in-
consistencies, and background variation can be seen. Such issues are highlighted
in more detail in b and c where the scratch and background illuminations around
the presented genes change significantly.

(a)

(b) (c)

Fig. 1. Example Images: Typical test set Slide Illustrating Structure and Noise (a) and
Sample Gene, Background Locations for GenePix Valleys (b) and ImaGene Circles (c)

What is needed is a more specific background determination process that can
account for the inherent variation between the gene and background regions. Tex-
ture synthesis represents a possible avenue for such background reconstruction
processes. An established reconstruction technique is that as proposed by Efros
et al. [14] whereby a non-parametric process grows a reconstruction outwards
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from an initial seed pixel, one pixel at a time via Markov Random Fields. The
Bertalmio et al. [15] approach on the other hand attempts to mimic techniques
as used by professional restorers of paintings and therefore works on the principle
of an isotropic diffusion model. Moreover, Chan et al. [16] greatly extended the
work of [14] and others to propose a curvature model based approach. However,
microarray images contain thousands of regions requiring such reconstructions
and are therefore computationally expensive to examine with the highlighted
techniques. In an attempt to overcome such time restrictions (although not fo-
cused at microarray data itself) Oliveira et al. [17] aimed to produce similar
results to [15] albeit quicker, although as we shall see the approach loses some-
thing in translation.

One of the first reconstruction techniques applied specifically to microarray
images is that as proposed by O’Neill et al. [9] which utilises a simplification
of the Efros et al. [14] technique. In this context, a gene spot is removed from
the surface and recreated by searching a known background region and selecting
pixels most similar to the known border. By making the new region most similar
to given border intensities it is theorised that local background structures will
transition through the new region. However, the best such a process has accom-
plished in this regard is to maintain a semblance of valid intensities, while the
original topological information is lost. The next section describes a technique
that attempts to address some of these issues, e.g. retention of topology, process
efficiency, and edge definition in a more natural way.

3 A New Analysis Technique

In this work, we have proposed Chained Fourier Image Reconstruction (CFIR), a
novel technique that removes gene spot regions from a microarray image surface.
Although this may seem counter-intuitive (the gene spots are the elements of
value in a microarray after all), the successful removal of these regions leads
to more accurate or natural looking background surfaces, which can be used to
yield yet more accurate gene spot intensities. Techniques such as O’Neill work in
the spatial domain exclusively and essentially compare all gene border pixels to
those of the local background to produce appropriate pixel mappings. Although
this works well, such brute force methods are typically expensive with respect to
execution time. However, if we harness the frequency domain along with more
traditional spatial ideas we can render a reconstruction that inherently deals
with the issues (illumination, shading consistencies etc) more efficiently.

Taking the diagram of Fig. 1b as our reference, let us now detail the CFIR pro-
cess outlined in Table 1. Initially due to the nature of the microarraying process,
gene spots can be rendered with different shapes and dimensions, both individu-
ally and through the channels. Therefore, a generic window centred at the gene
(as determined by GenePix) can be used to capture all pixels pxy within a spec-
ified square distance from this centre, where (x,y) are the relative coordinates
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of the pixels in the window centred at pixel p. Window size is calculated directly
from an analysis of the underlying image along with resolution meta-data if
needed. The window can then be used to determine the appropriate srcList and
trgList pixel lists (foreground and background) accordingly. Note that in the
current implementation, the background region resembles a square as defined by
the outer edges of the diamonds in Fig. 1b.

With the two lists (srcList, trgList) in place a Fast Fourier Transform (FFT)
is applied to both lists independently (as highlighted in lines 2∼4). If f(x,y) for

Table 1. Pseudo-Code of Chained Fourier Transform Reconstruction Function

Input

srcList : List of gene spot region pixels

trgList : List of sample region pixels

Output

outList : srcList pixels recalibrated into trgList range

Function fftEstimation(srcList,trgList):outList

1. For each gene

2. srcMask = fourier transform srcList members

3. trgSample = fourier transform trgList members

4. recon = srcMask * trgSample // to generate initial reconstructed surface

5. While doneIterate = 0

6. recon = fourier transform initial reconstructed surface

7. reconPhase = phase elements of reconstructed surface

8. minimum recon element = smallest element in the trgSample surface

9. recon = inverse fourier transform merged recon and reconPhase surfaces

// such that subtle characteristics are retained

10. recon elements ≤0 = smallest element in srcMask

11. recon elements ≥65535 = largest element in srcMask

12. reset non-gene pixels in recon = trgList

13. if difference between recon and trgSample ¡tolerance

14. doneIterate = 1

15. End If

16. End While

17. outList = reconstructed region

18. End For

End Function
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x;y=0,1,...,M-1;N-1 respectively denote the M×N image region, the digital FFT
for F(u,v) can be defined as

F(u,v) =
x=0∑

M−1

y=0∑

N−1

f(x,y)e−j2π( ux
M + vy

N ) (1)

where (u,v) represent the frequency coordinates of their spatial (x,y) equivalents.
Note the inverse transform is computed in much the same way. The real R,
imaginary I and phase φ components of the resulting FFT spectrum can then
be broken up according to

|F(u,v)| =
[
R2(u,v) + I2(u,v)

] 1
2 , and (2)

φ(u,v) = tan−1

[
I(u,v)
R(u,v)

]

, respectively (3)

Global features of the image regions (repeating patterns, overall region in-
tensity etc) thus become localised within the frequency spectrum, while non-
repeating structures become scattered. Retaining this phase information in the
reconstructed region is crucial as this has the effect of aligning global features
(much the same as the isotropic diffusion approach of [15] does for example) and
as such presents subtle surface characteristics (illumination and shading features
etc). In order to capture this subtle intensity information within the background
(trgList) region and allow the gene spot (srcList) area to inherit it, a simple min-
imisation function is used (as per lines 7∼9). More complicated criteria could be
computed in this regard but after critical testing it was found that the minimum
of the region produces good results and is thus used at present

R(u,v) = minimum |srcList(R), trgList(R)| (4)

The final stage of the algorithm (lines 10∼12) replaces modified background
(trgList) pixels within the gene spot (srcList) area with their original values. Re-
call, the FFT function disregards spatial information, which means subsequent
modifications (like the minimiser function) could well change inappropriate pix-
els with respect to the reversed FFT of line 9. Therefore, the original non-gene
spot pixels must be copied back into the modified regions such that erroneous
allocations are not propagated through the reconstructed region during the next
cycle.

The actual convergent criterion as highlighted in line 13 can be determined by
the mean squared error (MSE) or other such correlation methods between the re-
constructed and background regions. Generally though, the MSE falls rapidly over
the initial iterations and thenceforth slows until a minimum is reached. Conversely,
the correlation coefficient approach would be expected to rise rapidly over the ini-
tial iterations and then slow as convergence approaches. Regardless however, the
tolerance criterion guarantees termination of the reconstruction process when it-
erative changes are at a minimum. In practice, tolerance is calculated such that
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(a) (b) (c)

Fig. 2. Chained Fourier Transform Example: Original Image (a), Reconstructed O’Neill
(b) and CFIR (c) Regions

the absolute difference (for the gene spot (srcList) pixels specifically) between all
original and reconstructed pairs (for an individual region) are monotonically de-
creasing. Such monotonicity helps with retention of illumination and tone infor-
mation that would otherwise be lost. Fig. 2 presents a sample-reconstructed region
from the Fig. 1a image as processed by the techniques.

Application of frequency and spatial methods when applied separately to such
problems can work well (see Fig. 2b for example) but there are better ways to
carry out such processes. The formulation as described for CFIR allows us to
inherently combine advantages from both the frequency and spatial domains
such that reconstructed regions not only retain implicit domain information
but, are processed faster than contemporary methods. Related to this implicit
domain information (and suggested in Fig. 2bc) is the problem of correct edge
classification. Generally however, CFIR improves handling and production of
results accordingly as will be seen in the next section.

4 Experiments

This section details the results of numerous experiments that were designed to
test empirically the performance and differences between the O’Neill and CFIR
algorithms with respect to GenePix. Although there are many ways that such
performance characteristics can be distilled, for this work the focus is on the
resulting median expression intensities. These intensities become the raw gene
expressions (as used in post-analysis [1,3,4,5,6,7] work for example) and therefore
render overall insight into the reconstruction event. In addition, these values
allow us to drill down into a particular gene spots repeat set and as such help
clarify reconstruction quality.

As it is not possible to determine the optimal background for a gene spot
region, the best validation in this context would seem to be to compare against
rebuilt background regions. Such a comparison renders a clearer understanding
of the reconstruction characteristics. To aid in this, 64 synthetic gene spots (SGS)
were created and placed into existing background regions of the Fig. 1a image. If
the reconstruction processes were to perform in an ideal manner, the SGSs would
be removed from the slide such that these SGS regions are indistinguishable from
their local surrounding region.
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With the potential errors inherent in the GenePix background generation
thus highlighted, the next stage of testing involved determining how these errors
translate onto the reconstruction of real gene spots. Experiment two therefore
examines the median intensities of the control gene spots for all blocks across
the Fig. 1a image and the entire test set. Finally, experiment three carries out
an explicit comparison between the techniques and thus yields the gained im-
provements (or not) of a particular technique as compared with GenePix.

Note that all of the images used in this paper were derived from two experi-
ments conducted using the human gen1 clone set data. These two experiments
were designed to contrast the effects of two cancer inhibiting drugs (PolyIC and
LPS) onto two different cell lines, one being normal (control, or untreated) and
the other the treatment (HeLa) line over a series of several time points. In total,
there are 47 distinct slides with the corresponding GenePix results present.

The first experiment is designed to determine how well the reconstruction
process can remove a synthetic gene from the image. When removed, the new
region can be compared to the original with the difference calculated explicitly.
Fig. 3 distils this difference information into a clear plot by calculating the aver-
age absolute pixel error for the SGS regions, as determined by the reconstruction
techniques.

Fig. 3. Synthetic Gene Spots: Average Absolute Pixel Error

In effect, the graph shows that on average, GenePix’s median sampling ap-
proach to background classification yields a potential intensity error of 177 flux
per pixel for an SGS region, while the other techniques yield smaller error es-
timates. A consequence of this is that downstream analysis based on GenePix
results directly must produce more erroneous gene expressions than realised.

The second experiment (with results as shown in Fig. 4) conducts the per-
formance evaluation of CFIR, O’Neill and GenePix using true gene spots. This
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experiment is particularly focused on the relationships between expression mea-
surements for all control repeat genes in the same slide (Fig. 4a) and across all
slides in the test set (Fig. 4b). In all cases the underlying assumption for re-
peated genes is that they (the genes) should have highly similar intensity values
(ideally) for a given time point, regardless of their location on the slide surface.
Although we would perhaps expect to see some differences in the values as the
time points increase over the duration of the biological experiments.

(a)

(b)

Fig. 4. Real Gene Spot Curves: Absolute Medians for 32 genes over Fig. 1a (a) and
the Test set (b) Regions

The plots represent the absolute foreground median from both image channels
for the tested techniques. It is clear from Fig. 4a that CFIR outperformed the
other methods comfortably as far as the reduction of individual gene intensities
is concerned. However, for the saturated gene spots (gene 15 for example) the
estimation difference increases, although it is still closer than GenePix. Gener-
ally, for this particular image, CFIR outperformed both O’Neill and GenePix in
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relation to reconstruction with the specific residuals at 14514, 7749 and 13468
flux for GenePix, CFIR and O’Neill respectively. Indeed, as far as control data
is concerned the CFIR process reduced noise by ∼46%.

Plotting the entire 47-slide test set produces a cross-sectional average through
the data. The O’Neill and CFIR processes are much closer overall as compared to
the sample slide; however, there are subtle handling differences in the saturated
gene regions. Essentially, the intensity jump relationship for the saturated genes
has flipped, meaning that CFIR seems to cope with such issues in a smoother
way overall. The respective residuals for the entire test set are 10374, 7677 and
9213 flux respectively, which indicates that although not perfect, CFIR tends to
produce lower repeat scores in general. To be fair the O’Neill technique has im-
proved the overall score somewhat with respect to the individual image surface.
It is clear that reconstructing the true gene spot regions does have a positive

(a)

Time on Xeon 3.4GHz (hh:mm:ss)
Image GenePix O’Neill CFIR

Hela PolyIC t00(1a) 4:00:00+ 1:53:00 00:52:39
Hela PolyIC t05 4:00:00+ 1:58:00 00:58:15
Hela PolyIC t18 4:00:00+ 1:52:00 00:54:44

(b)

Fig. 5. Final Results Comparison: Matrix for test set showing difference in repeat ex-
pression fluctuations (a); GenePix, CFIR and Both techniques are assigned the colours
black, white and grey (∼10% difference) respectively and Sample Timing Chart (b)

effect on the final expression results but, not so obvious, are the ramifications
this reconstruction is having over the entire test set. Fig. 5a therefore plots a
comparison chart which shows explicitly the improvement (or not) of a partic-
ular reconstruction method as compared to the original GenePix expressions.
In addition, execution time plays a critical role in the reconstruction task, as
techniques need to run as fast as possible given the number of gene spots that
must be processed. Therefore, Fig. 5b presents a brief breakdown of the timings
required for the techniques to parse a small percentage of the entire test set.

The distinct banding occurring in gene regions 3∼8 and 16∼19 of Fig. 5a
are associated with saturated (or near background) intensities as created by
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the scanner hardware and suggest more work is needed with respect to these
genes. The non-banded genes on the other hand are indicative of the individual
reconstruction techniques being able to account more appropriately for gene
intensity replacement. Table 5b highlights the significant speed increase gained
by applying the CFIR process to reconstruction rather than the O’Neill and
GenePix methods.

5 Conclusions

The paper looked at the effects of applying both existing and new texture syn-
thesis inspired reconstruction techniques to real-world microarray image data. It
has been shown that the use of existing methods (which have typically focused
on aesthetic reconstructions) to medical image applications can be highly effec-
tive, however their output quality and processing time’s need to be significantly
improved. As for microarray-focused reconstruction, pixel fill order as applied by
the O’Neill technique plays a crucial role and should therefore be crafted with
greater care.

To overcome timing and accuracy issues, we proposed a novel approach to
reconstructing a gene’s background by attempting to harness an image’s global
information more intently along with the gene’s neighbour pixels. The proposed
technique takes advantage of the grouping concept of the frequency domain and
characterises global entities. At the same time, we use local spatial knowledge
of a gene to help restrict a constructed regions spread. Results obtained from
several experiments showed great improvement over a commonly used package
(GenePix) and a brute force approach (O’Neill). Specifically, not only was the
gene repeat variance reduced from slides in the test set, but in addition the
construction time was decreased ∼50% in comparison to O’Neill’s technique.

In future studies we wish to investigate gene spots that straddle strong
artefact edges along with general transition issues as they are subject to the
sub-allocation of replacement pixel(s). A transition edge will have a sharp yet
convoluted evolution that can influence the accuracy of a gene’s background.
Such inconsistencies render themselves in the surface as halos and it would
be beneficial if such halos were removed more appropriately. The artefact sub-
allocation problem on the other hand requires a subtle approach to correction
and we believe a weighted transition map would be more appropriate than the
current bivalence approach.
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Abstract. We propose an efficient method using multi-objective genetic 
algorithm (MOGAMOD) to discover optimal motifs in sequential data. The 
main advantage of our approach is that a large number of tradeoff (i.e., 
nondominated) motifs can be obtained by a single run with respect to 
conflicting objectives: similarity, motif length and support maximization. To 
the best of our knowledge, this is the first effort in this direction. MOGAMOD 
can be applied to any data set with a sequential character. Furthermore, it allows 
any choice of similarity measures for finding motifs. By analyzing the obtained 
optimal motifs, the decision maker can understand the tradeoff between the 
objectives. We compare MOGAMOD with the three well-known motif 
discovery methods, AlignACE, MEME and Weeder. Experimental results on 
real data set extracted from TRANSFAC database demonstrate that the 
proposed method exhibits good performance over the other methods in terms of 
runtime, the number of shaded samples and multiple motifs. 

Keywords: Motif Discovery, Multi-Objective Genetic Algorithms. 

1   Introduction 

Motif discovery is one of the fundamental problems that have important applications 
in locating regulatory sites and drug target identification. Regulatory sites on DNA 
sequence normally correspond to shared conservative sequence patterns among the 
regulatory regions of corrected genes [8]. These conserved sequence patterns are 
called motifs. The actual regulatory DNA sites corresponding to a motif are called 
instances of the motif. Identifying motifs and corresponding instances is very 
important, so biologists can investigate the interactions between DNA and proteins, 
gene regulation, cell development and cell reaction under physiological and 
pathological conditions. The automatic motif discovery problem is a multiple 
sequence local alignment problem under the assumption that the motif model gives 
the optimal score for some appropriate scoring function. Solving this problem is NP-
complete theoretically. There are several cases for this problem: 

 
1. the simple sample: each sequence in the data set contains exactly one motif 

instance 
2. the corrupted sample: an instance may not appear in every sequence, 
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3. the invaded sample: more than one instance may exist in some sequences, 
4. the multiple patterns: the sequences may contain more than a single common 

motif. 
 
To handle the motif discovery problem, including one or more of the above cases, 
various approaches and tools were proposed [22, 1-4, 17, 18, 21, 16]. Recently, 
genetic algorithms (GA) have been used for discovering motifs in multiple unaligned 
DNA sequences. Of these, Stine et al., [19] presented a structured GA (st-GA) to 
evaluate candidate motifs of variable length. Fitness values were assigned as function 
of high scoring alignment performed with BLAST [20]. Liu et al., [13] developed a 
program called FMGA for the motif discovery problem, which employed the general 
GA framework and operators described in SAGA [14]. In their method, each 
individual represents a candidate motif generated randomly, one motif per sequence. 
Then, Che et al., [5] proposed a new GA approach called MDGA to efficiently predict 
the binding sites for homologous genes. The fitness value for an individual is 
evaluated by summing up the information content for each column in the alignment of 
its binding site. Congdon et al., [6] developed a GA approach to Motif Inference, 
called GAMI, to work with divergent species, and possibly long nucleotide 
sequences. The system design reduces the size of the search space as compared to 
typical window-location approaches for motif inference. They presented preliminary 
results on data from the literature and from novel projects. Finally, Paul and Iba [26] 
presented a GA based method for identification of multiple (l, d) motifs in each of the 
given sequences. The method can handle longer motifs and can identify multiple 
positions of motif instances of a consensus motif and can extract weakly conserved 
regions in the given sequences. 

However, all of the above studies employ single-objective to discover motifs, 
although different methods of fitness calculation are used. Also, while in most of the 
proposed methods the length of motif to be extracted is given beforehand; only one 
motif per sequence is assumed in some methods. Whereas, multiple similar motifs 
may exist in a sequence, and identification of those motifs is equally important to the 
identification of a single motif per sequence. Moreover, almost all of the methods try 
to find motifs in all of the given sequences. However, some sequences may not 
contain any motif instance. If it is assumed that a motif instance should be included in 
all the target sequences, the similarity value used to compare sequences decrease. In 
this paper, to address all the problems listed and mentioned above, we propose a 
multi-objective GA based method for motif discovery. The paper demonstrates 
advantages of multi-objective approach over single-objective ones to discover motifs 
efficiently and effectively. For this purpose, we use the following three-objective 
formulation to find a large number of longer and stronger motifs. 

 

SupportMaximizeLengthMotifMaximizeSimilarityMaximize ,,  
 

The meanings of these objectives will be discussed in the objectives subsection in 
detail. Next, we compare the three-objective formulation with the single-objective 
approach based on the following weighted scalar objective function: 
 

SupportwLengthMotifwSimilaritywMaximize ... 321 ++  
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We performed experiments on two real data sets to demonstrate the effectiveness of 
our method. The experimental results show the superiority of the proposed method, in 
terms of motif length, strongness and the runtime required to find the motifs, over 
three well known motif discovery methods, AlignACE, MEME and Weeder. 

2   Multi-Objective Optimization 

Many real world problems involve multiple measures of performance or objectives, 
which should be optimized simultaneously. Multi-objective optimization (MOO) 
functions by seeking to optimize the component of a vector-valued objective function. 
Unlike single-objective optimization, the solution to a MOO problem is a family of 
points known as the Pareto-optimal set. A general minimization problem of M 
objectives can be mathematically stated as 

Minimize ],,1),([)( Mixfxf i …==  

subject to: 
 Jjxg j ,,2,10)( …=≤ ,   

Kkhhk ,,2,10)( …==  

where )(xf i  is the thi  objective function, )(xg j  is the thj  inequality constraint. The 

MOO problem then reduces to finding x  such that )(xf  is optimized. In general, the 

objectives of the optimization problem are often conflicting. Optimal performance 
according to one objective, if such an optimum exists, often implies unacceptable low 
performance in one or more of the other objective dimensions, creating the need for a 
compromise to be reached. A suitable solution to such problems involving conflicting 
objectives should offer acceptable, though possibly sub-optimal in the single 
objective sense, performance in all objective dimensions, where acceptable is a 
problem dependent and ultimately subjective concept. An important concept in MOO 
is that of domination, where a solution ix   is said to dominate another solution jx  if 

both the following conditions are true: 

• the solution ix  is not worse than jx  in all objectives; 

• the solution ix  is strictly better than jx  in at least one objective. 

This, in turn, leads to the definition of Pareto-optimality, where a decision 
vector Uxi ∈ , where U  stands for the universe, is said to be Pareto-optimal if and 

only if there exists no jx , Ux j ∈ , such that ix  is dominated by jx . Solution ix  is 

said to be nondominated. The set of all such nondominated solutions is called the 
Pareto-optimal set or the nondominated set. . In general, MOO problems tend to 
achieve a family of alternatives which must be considered the relevance of each 
objective relative to the others [27]. Recently, some researchers have studied on 
different problems by using multi-objective genetic algorithms. We have already 
participated in some of these efforts with data mining area [9-11]. 
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3   The MOGAMOD Algorithm 

We use a well-known high-performance multi-objective genetic algorithm called 
NSGA II [7] to find a large number of motifs from biosequences with respect to three 
objectives, which will be discussed in the objectives subsection. The NSGA II 
algorithm is also employed in the two objectives case. On the other hand, we use a 
standard single-objective GA with a single elite solution in the case of the single-
objective formulation. 

3.1   Structure of the Individuals 

An individual in MOGAMOD represents the starting locations of a potential motif on 
all the target sequences. An individual expect for its part showing the motif length is 
divided into n genes, where each gene corresponds to starting location of a motif, if 
any, in the corresponding sequence. The genes are positional, i.e., the first gene deals 
with the first sequence, the second gene deals with the second sequence, and so on. 

Each thi  gene, ni ,,1…= , is subdivided into two fields: weight ( iw ) and starting 

location ( is ), as shown in Figure 1. 

 

Fig. 1. Representation of an individual 

The field weight ( iw ) is a real-valued variable taking values in the range ]1..0[ . 

This variable indicates whether or not the potential motif is present in the 
corresponding sequence. More precisely, when iw  is smaller than a user-defined 

threshold (called Limit) the motif will not be extracted from the thi  sequence. 
Therefore, the greater the value of the threshold Limit, the smaller is the probability 
that the corresponding sequence will be included in discovering that motif. 

The field starting location ( is ) is a variable that indicates the starting location of 

the motif instance in the thi  sequence. 
In this study, an extra part in each individual was used to determine the length of 

the motif. The value of this part changes between 7 and 64 because we restricted the 
minimum and the maximum length of the predicted motif in those values. 

Note that the above encoding is quite flexible with respect to the length of the 
motifs. A traditional GA is very limited in this aspect, since it can only cope with 
fixed-length motifs. In our approach, although each individual has a fixed length, the 
genes are interpreted (based on the value of the weight iw ) in such a way that the 

individual phenotype (the motif) has a variable length. Hence, different individuals 
correspond to motifs with different length. 

The start of the first population consists of generating, arbitrarily, a fixed number 
of individuals during the evolution. 
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3.2   Objectives and Selection 

The fitness of an individual in MOGAMOD is assessed on the basis of similarity, 
motif length and support. 
 
Similarity: It performs a measure of similarity among all motif instances defining an 
individual. To calculate it, we first generate a position weight matrix from the motif 
patterns found by MOGAMOD in every sequence. Then, the dominance value ( dv ) 
of the dominant nucleotide in each column is found as follows: 

)},({max)( ibfidv
b

= , li ,,1…=  

where ),( ibf  is the score of the nucleotide b  on column i  in the position weight 

matrix, )(idv  is the dominance value of the dominant nucleotide on column i , and l  

is motif length. 
We define the similarity objective function of motif M as the average of the 

dominance values of all columns in the position weight matrix. In other words, 

l

idv

MSimilarity

l

i
∑

== 1

)(

)(  

The closer the value of the similarity (M) to one, the larger the probability that the 
candidate motif M will be discovered as a motif. The following example shows how 
to compute the similarity measure in given two position weight matrixes with 
different size: 

Table 1. The position weight matrix of a 
motif with length 4 

Table 2. The position weight matrix of a 
motif with length 5 

 1 2 3 4 
A 0.2 1 0 0 
C 0.2 0 1 1 
T 0.6 0 0 0 
G 0 0 0 0  

 1 2 3 4 5 
A 0.25 0 0.75 1 0 
C 0.5 0 0.25 0 0 
T 0.25 1 0 0 1 
G 0 0 0 0 0  

 
The first matrix (Table 1) implies that the number of target sequences in a dataset 

may be 5 and the motif length is found to be 4. In such a case, the dominant 
nucleotide for column 1 is T and its dominance value is 0.6. The dominance values of 
the other columns are 1. As for the similarity value, it is computed as:  

9.0
4

)1116.0( =+++
 

Similarly, in the second matrix (Table 2), the number of target sequences may be 8 
and the motif length is determined to be 5. The similarity value is computed as 0.85 
for this longer motif. 
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Motif Length: In motif discovery, a motif with large length is always desired because 
the longer the motif, the lesser is the chance that it simply occurred by chance in the 
given target sequence. 
 
Support: Here, the meaning of this objective is the same with that in the data mining 
field. Sometimes, a candidate motif may not appear in every sequence. In other 
words, one or more sequence may not include any candidate motif. In this case, the 
aim should become to discover optimal motif, leaving these corrupted sequences out. 
So, support is the number of sequences composing candidate motifs. The greater the 
support value, the stronger is the motif covered by most of the sequences in the 
dataset. Overall, the optimal motif discovery problem is converted into the following 
three-objective optimization problem: 

)(),(),( MSupportMaximizeMLengthMotifMaximizeMSimilarityMaximize  

After applying the nondominated sort algorithm, the individuals are assigned a 
crowding distance and selection is performed using the crowded tournament selection. 
The crowding distance is computed as the sum of the difference of the objective 
values of the solutions preceding and following the current solution (corresponding to 
the individual under consideration) for each objective. This provides a measure of the 
density of the solution surrounding a particular point in the population. 

In crowded tournament selection, a pair of individuals is selected randomly, and 
the one with the lower rank is selected. If the ranks of the individuals are equal, then 
the individual with a larger crowding distance is chosen. The large crowding distance 
ensures that the solutions are spread along the Pareto-optimal front. 

3.3   Genetic Operators 

In MOGAMOD, the usual one-point crossover operator is stochastically applied with 
a predefined probability, using two individuals of the selected pool. The mutation 
operator is used to foster more exploration of the search space and to avoid 
unrecoverable loss of genetic material that leads to premature convergence to some 
local minima. In general, mutation is implemented by changing the value of a specific 
position of an individual with a given probability, denominated mutation probability. 
MOGAMOD developed three mutation operators tailored for our genome 
representation: 

Shift the starting location towards the right: The value in the starting location of a 
randomly selected gene is increased by one. 
Shift the starting location towards the left: The value in the starting location of a 
randomly selected gene is decreased by one. 
Random-changing: The mutation produces a small integer number that is then added 
to or subtracted from the current content of any of length, weight or starting location. 
This is implemented in such a way that the lower and upper bounds the domain of the 
field are never exceeded. 
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To sum up, MOGAMOD process employed in this study can be summarized by the 
following algorithm, 

The Algorithm: 
Input: Population size N; Maximum number of generations G; Crossover 

probability cp ; Mutation rate mp . 
Output: Nondominated set 

(1) P:=Initialize (P) 

(2) while the termination criterion is not satisfied do 

(3) C:=Select From (P) 

(4) CI:=Genetic Operators (C) 

(5) P:=Replace (PUCI) 

(6) end while 

(7) return (P) 

First, an initial population P is generated in Step 1. Pairs of parent solutions are 
chosen from the current population P in Step 3. The set of the selected pairs of parent 
solutions is denoted by C in Step 3. Crossover and mutation operations are applied to 
each pair in C to generate the offspring population CI in Step 4. The next population is 
constructed by choosing good solutions from the merged population PUCI. The 
pareto-dominance relation and a crowding measure are used to evaluate each solution 
in the current population P in Step 3 and the merged population PUCI in Step 5. 
Elitism is implemented in Step 5 by choosing good solutions as members in the next 
population from the merged solution PUCI. 

4   Experimental Results 

We conducted some experiments in order to analyze and demonstrate the efficiency 
and effectiveness of MOGAMOD. Further, the superiority of the proposed approach 
has been demonstrated by comparing it with three existing motif discovery methods, 
namely AlignACE [17], MEME [1], and Weeder [16]. In our experiments, we 
concentrate on testing the time requirements as well as changes in the main factors 
that affects the proposed multi-objective process, namely finding nondominated sets, 
support, length and similarity. All of the experiments have been conducted on a 
Pentium IV 3.0GHz CPU with 1GB of memory and running Windows XP. As data 
sets are concerned, we used two different data sets of sequences utilized as a 
benchmark for assessing computational tools for the discovery of transcription factor 
binding sites [24], which were selected from TRANSFAC database [25]. 

We concentrated our analysis on yst04r and yst08r sequence data sets. Further, in 
all the experiments conducted in this study, MOGAMOD process started with a 
population of 200 individuals. As the termination criteria, the maximum number of 
generations has been fixed at 3000. Finally, while the crossover probability is chosen 
to be 0.8, the mutation rate of 0.3 was used for each kind of mutation. 
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Table 3. The objective values of the nondominated solutions for yst04r 

 Support Length Similarity 
24 0.76 
20 0.78 

 
4 

15 0.87 
15 0.82 5 
14* 0.84 
14+ 0.77 6 
13 0.81 
9 0.80 

 
 
 
 
MOGAMOD 

7 
8 0.84 

Single-objective GA 5 9 0.88 

Table 4. Comparisons of the conserved motifs predicted by five different methods for yst04r 

Method Predicted Motif 
AlignACE CGGGATTCCA 
MEME CGGGATTCCCC 
Weeder TTTTCTGGCA 
Single-
objective 
GA 

CTGGCATCC 

MOGAMOD 
*CGAGCTTCCACTAA 
+CGGGATTCCTCTAT 
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Fig. 2. Comparison of runtimes for yst04r data set 

The standard single-objective GA was also executed using the same parameter 
values; and the weight values w1=5, w2=1 and w3=1. Three sets of experiments for 
each data set were carried out. The first set of experiments is dedicated to evaluate the 
yst04r sequence data set. The data set contains 7 sequences of 1000 bps each. Some 
nondominated solutions found by MOGAMOD are reported in Table 3. Here, the 
values of length and similarity of some nondominated solutions are given for four 
different values of support. As can be easily seen from Table 3, as the support value 
increases, the motif length decreases. However, for each number of the supports, as 
the motif length decreases, the similarity value raises. Thus, the tradeoff between the 
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similarity and the motif length is clearly observed for four values of support. Table 3 
gives the solution found by the standard single-objective GA process as well. 

In the second experiment of the first set, we showed the consensus motif patterns 
obtained for five different motif discovery methods. Table 4 gives the results of this 
experiment. An important point here is that while MOGAMOD finds alternative 
solutions for different values of support, the other methods extract only one motif 
pattern. For example, CGAGCTTCCACTAA and CGGGATTCCTCTAT are two 
motifs predicted by MOGAMOD which have the same length but different support 
and similarity values. The final experiment for this set compares the runtimes of four 
different methods. The results are reported in Figure 2. The runtime reported for 
MOGAMOD represents a nondominated solution at the end of 3000 generations. As a 
result of this experiment, it has been observed that MOGAMOD outperforms the 
other two approaches for yst04r data set. The runtime of Weeder is not available. 

Table 5. The objective values of the nondominated solutions for yst08r. 

 Support Length Similarity 
20 0.75 
15*1 0.84 

 
7 

15+1 0.87 
15 0.79 
14*2 0.83 

 
8 

13+2 0.85 
13 0.82 9 
12 0.84 
12 0.79 10 
11 0.82 
11 0.77 

 
 
 
 
 
MOGAMOD 

11 
11 0.80 

Single-objective GA 8 10 0.86 

 
In the second set of the experiments, we applied MOGAMOD on a data set having 

larger number of sequences, yst08r, as its sequence length is the same with the 
previous data set. This new data set contains 11 sequences. The first experiment 
obtains the values of objectives of the nondominated set for yst08r data set. Table 5 
reports the results. As can be easily seen from Table 5, for two solutions having the 
same motif length, the similarity value of the solution whose support value is higher, 
is lower than that of the other. The second experiment deals with comparing the 
conserved motifs predicted by five different approaches. It can be easily realized from 
Table 6 that MOGAMOD and AlignACE produce multiple motifs. 

Furthermore, Table 6 shows two multiple motifs discovered by MOGAMOD 
whose lengths are different, as well. The length of the first set of multiple motifs is 15 
and their support value is 7 while the lengths of the second set of multiple motifs are 
14 and 13, and their support value is 8. 
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Table 6. Comparisons of the conserved motifs predicted for yst08r 

Method Predicted Motif 
AlignACE CACCCAGACAC 

TGATTGCACTGA 
MEME CACCCAGACAC 
Weeder ACACCCAGAC 
Single-
objective GA 

AACCCAGACA 

 
MOGAMOD 

*1TCTGGCATCCAGTTT 
+1GCGACTGGGTGCCTG 
*2GCCAGAAAAAGGCG 
+2ACACCCAGACATC 
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Fig. 3. Comparison of runtimes for yst08r data set 

The third experiment investigates the runtimes of the proposed method and the 
other approaches in the case of a data set having large number of sequences. The 
results in Figure 3 demonstrate that the performance of MOGAMOD decreased with 
respect to the previous data set. This is an expected result since the length of 
individuals in population raises with increasing sequence number in the data set. 

5   Discussion and Conclusions 

In this paper, we contributed to the ongoing research by proposing a multi-objective 
GA based method for discovering optimized motifs (MOGAMOD) with respect to 
criteria we defined. These criteria are similarity of instances, predicted motif length 
and support exhibiting the strongness of motif. 

MOGAMOD includes five contributions. First, the algorithm is equally applicable 
to any variety of sequential data. Second, it allows arbitrary similarity measure. 
Although we used relatively a simple similarity measure in the paper, it can be easily 
changed or extended. Another contribution is that a large number of nondominated 
sets are obtained by its single run. Thus, the decision maker can understand the 
tradeoff between the similarity, motif length and support by the obtained motifs. Next, 
by MOGAMOD, more than one instance may be discovered in the same sequence and 
multiple-motifs may be extracted. Fourth, the optimal motifs are obtained without 
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giving motif length. Finally, MOGAMOD outperforms the two well-known motif 
discovery methods in terms of runtime. 

The experiments conducted on two data sets illustrated that the proposed approach 
produces meaningful results and has reasonable efficiency. The results of two data 
sets are consistent and hence encouraging. In the future, we will revise our similarity 
measure to make this score more realistic, improve our algorithm such that one could 
have better performance in lower similar sequences, and experiment with the realistic 
data sets having longer sequences and large number of sequences. Currently, we are 
also investigating how to find gapped motifs. 
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Abstract. In this work a new method for clustering and building a
topographic representation of a bacteria taxonomy is presented. The
method is based on the analysis of stable parts of the genome, the
so-called “housekeeping genes”. The proposed method generates topo-
graphic maps of the bacteria taxonomy, where relations among differ-
ent type strains can be visually inspected and verified. Two well known
DNA alignement algorithms are applied to the genomic sequences. To-
pographic maps are optimized to represent the similarity among the
sequences according to their evolutionary distances. The experimental
analysis is carried out on 147 type strains of the Gammaprotebacteria
class by means of the 16S rRNA housekeeping gene. Complete sequences
of the gene have been retrieved from the NCBI public database. In the
experimental tests the maps show clusters of homologous type strains
and presents some singular cases potentially due to incorrect classifica-
tion or erroneous annotations in the database.

1 Introduction

Microbial identification is crucial for the study of infectious diseases. The classi-
cal method to identify bacterial isolates is based on the comparison of morpho-
logic and phenotypic characteristics to those described as type or typical strains.
Recently a new naming approach based on bacteria genotype has been proposed
and is currently under development. In this new approach phylogenetic relation-
ships of bacteria could be determined by comparing a stable part of the genetic
code. The part of the genetic code commonly used for taxonomic purposes for
bacteria is the 16S rRNA “housekeeping” gene. The 16S rRNA gene sequence
analysis can be used to obtain a classification for rare or poorly described bac-
teria, to classify organisms with an unusual phenotype in a well defined taxon,
to find misclassification that can lead to the discovery and description of new
pathogens.

The aim of this work is to obtain a topographic representation of bacteria
clusters to visualize the relations among them. Moreover, we intend to achieve
this objective by using directly the genotype information, without building a

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 332–343, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Soft Topographic Map for Clustering and Classification of Bacteria 333

feature space. Many clustering approaches are based on a feature space where
objects are represented. Biological datasets usually contain large objects (long
nucleotides sequences or images); a vector space representation of such objects
can be difficult and typically results in a high dimensional space where the
euclidean distance is a low contrast metric. The definition of a vector space also
requires the choice of a set of meaningful axes that represent some measurable
qualities of the objects. In DNA sequences this approach is not straightforward
and may be hindered by an arbitrary choice of features. According to these
considerations we do not adopt a vector space representation, but a matrix of
pairwise distances obtained directly from the genetic sequences. Such a matrix
can be computed in terms of string distances by means of well understood and
theoretically sound techniques commonly used in genomics.

The paper is organized as follows: in section 2 we refer to works that focus
on similar classification problems of biological species; in sections 3 and 4 we
describe the algorithms we have adopted for the similarity measure and the
generation of topographic maps; in section 5 we present an experimental analysis
of the proposed method and provide an interpretation of the results.

2 Related Work

In recent years, several attempts to reorganize actual bacteria taxonomy have
been carried out by adopting 16S rRNA gene sequences. Authors in [1] focused
on the study of bacteria belonging to the prokaryothic phyla and adopted the
Principal Component Analysis method [2] on matrices of evolutionary distances.
Clarridge [3], Drancourt et al. [4,5] carried out an analysis of 16S rRNA gene
sequences to classify bacteria with atypical phenotype: they proposed that two
bacterial isolates would belong to different species if the dissimilarity in the 16S
rRNA gene sequences between them was more than 1% and less than 3%. Clus-
tering approaches for DNA sequences [7] and for protein sequences [9] adopted
Median Som, an extension of the Self-Organizing Map (SOM) to non-vectorial
data. Chen et al. [11] proposed a protein sequence clustering method based on
the Optic algorithm [12]. Butte and Kohane [8] described a technique to find
functional genomic clusters in RNA expression data by computing the entropy
of gene expression patterns and the mutual information between RNA expression
patterns for each pair of genes. INPARANOID [13] is another related approach
that performs a clustering based on BLAST [14] scores to find orthologs and
in-paralogs in two species.

Among other algorithms for the clustering of pairwise proximity data, it is
worth to mention an approach to segment textured images [29]. Dubnov et al. [16]
proposed a nonparametric pairwise clustering algorithm that iteratively extracts
the two most prominent clusters in the dataset, thus generating a hierarchical
clustering structure. A hierarchical approach was also followed in [17,18]. Other
works, e.g. [19,20], adopted Multidimensional Scaling [22] to embed dissimilarity
data in a Euclidean space.
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3 Genetic Sequence Similarity

3.1 Sequence Alignment

Sequence alignment allows to compare homologous sites of the same gene be-
tween two different species. For this purpose, we used two of the most popular
alignment algorithms: ClustalW [23] for multiple-alignment; and Needleman-
Wunsch [24] for pairwise alignment. The ClustalW algorithm aims to produce
the best alignment configuration considering all the sequences at the same time,
whereas Needleman-Wunsch algorithm provides a global optimum alignment be-
tween two sequences even of different length. Sequence alignment algorithms
usually insert gaps in the input sequences in order to stretch them and to find
the best matching configuration: gaps represent nucleotide insertions or deletions
and are very important in terms of molecular evolution. An example of pairwise
alignment is shown in Figure 1.

Fig. 1. Pairwise alignment between two gene sequences

3.2 Evolutionary Distance

The evolutionary distance is a distance measure between two homologous se-
quences, previously aligned. There are several kinds of evolutionary distances:
the simplest one is the number of nucleotide substitutions per site. The number
of substitutions observed between sequences is often smaller than the number
of substitutions that have actually taken place. This is due to many genetic
phenomena such as multiple substitutions on the same site (multiple hits), con-
vergent substitutions or retro-mutations. As a consequence, it is important to
use stochastic methods in order to obtain an exact estimate of evolutionary dis-
tances. Many stochastic models exist that differ from each other on the basis of
their a priori assumptions.

The most common a priori assumptions are:

– all sites evolve in an independent manner;
– all sites can change with the same probability;
– all kinds of substitution are equally probable;
– substitution speed is constant over time.
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In our study, we used the method proposed by Jukes and Cantor [25], where all
the assumptions above are valid. According to [25], the evolutionary distance d
between two nucleotide sequences is equal to:

d = −3
4

ln
(

1− 4
3
p

)

, (1)

where p is the number of substitutions per site, defined as:

p =
number of different nucleotides

total number of compared nucleotides
. (2)

It is important to note that sites containing gaps or undefined bases are not
considered in the computation of distances.

Evolutionary distances computed with (1) constitute the elements of a dis-
similarity matrix that represents the input for the algorithm described in the
next section.

4 Soft Topographic Map Algorithm

A widely used algorithm for topographic maps is the Kohonen’s Self Organizing
Map (SOM) algorithm [31], but it does not operate with dissimilarity data.

According to Luttrell’s work [26], the generation of topographic maps can
be interpreted as an optimization problem based on the minimization of a cost
function. This cost function represents an energy function and takes its minimum
when each data point is mapped to the best matching neuron, thus providing
the optimal set of parameters for the map.

An algorithm based on this formulation of the problem was developed by
Graepel, Burger and Obermayer [27,28] and provides an extension of SOM to
arbitrary distance measures. This algorithm is called Soft Topographic Map
(STM) and creates a map using a set of units (neurons or models) organized in
a rectangular lattice that defines their neighbourhood relationships.

The cost function for soft topographic mapping of proximity data (in our case
a dissimilarity matrix) can be formulated as follows:

E({ctr}) =
1
2

∑

t,t′

∑

r,s,u

ctrhrsct′uhus∑
t′′
∑

v ct′′vhvs
dtt′ , (3)

where dtt′ is the generic element of the dissimilarity matrix, namely the pairwise
distance among nucleotide sequences of bacteria t and t′. Two constraints hold
in (3):

∑
r ctr = 1, ∀t, i.e. each data vector can belong only to one neuron r, and∑

s hrs = 1, ∀r. The function hrs is equivalent to the neighborhood function of
classic SOM algorithm and represents the coupling between neurons r and s in
the map grid. hrs is usually chosen as a normalized Gaussian function such as:

hrs ∝ exp

(

−|r− s|2

2σ2

)

, ∀r, s. (4)
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Table 1. Soft Topographic Map algorithm

1. Initialization Step:
(a) etr ← ntr, ∀t, r, ntr ∈ [0, 1]
(b) compute lookup table for hrs as in Eq. (4)
(c) compute dissimilarity matrix from input data as in Eq. (1)
(d) put β ∼= β∗

(e) choose βfinal, increasing temperature factor η, convergence threshold ε
2. Training Step:

(a) while β < βfinal (Annealing cycle)
i. repeat (EM cycle)

A. E step: compute P (xt ∈ Cr)∀t, r as in Eq. (5)
B. M step: compute anew

tr , ∀t, r as in Eq. (7)
C. M step: compute enew

tr , ∀t, r as in Eq. (6)
ii. until

∥
∥enew

tr − eold
tr

∥
∥ < ε

iii. put β ← ηβ
(b) end while

In order to optimize the cost function the deterministic annealing [29,30] tech-
nique has been used. This technique is based on the optimization of a family of
cost functions, representing free energy, that depend on the parameter β, the so
called inverse temperature. This parameter represents the amount of smoothing
that is done to the original cost function.

The minimization of this function leads to the probability of the assignment
of the data vector t to the node r (i.e. to its cluster Cr):

P (xt ∈ Cr) =
exp(−βetr)∑
u exp(−βetu)

, ∀t, r. (5)

In Equation (5), etr is the partial assignment cost of data vector xt to be
assigned to cluster Cr, and it is defined as:

etr =
∑

s

hrs

∑

t′

at′s

(

dtt′ − 1
2

∑

t′′

at′′sdt′t′′

)

, ∀t, r. (6)

Equation (6) is obtained considering that diagonal elements of the dissimilar-
ity matrix are equal to zero and that the dissimilarity matrix is symmetric. The
weighting factors atr are given by:

atr =
∑

s hrsP (xt ∈ Cs)∑
t′
∑

s hrsP (xt′ ∈ Cs)
, ∀t, r (7)

and can be seen as weighted averages over data vectors.
The Soft Topographic Map algorithm for proximity data described above can

be summarized in the pseudo code of Table 1. Minimization procedure can be
done in two steps, formed by two nested loops. The inner loop 2(a)i constitutes an
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expectation-maximization (EM) algorithm: starting from a random initialization
of partial costs, equations (5), (7), (6) are computed in sequence for a fixed value
of β until the difference between current partial costs and previous partial costs
is lower than a certain threshold. Then, in the outer loop 2a, in order to find
the global minimum of the cost function, β is gradually increased and the inner
loop repeated. β is increased according to the annealing scheme β ← ηβ, with
η = 1.1 . . .2.0, up to a previously chosen βfinal.

As seen in [27], the initial value of β should be just above a certain value β∗

calculated as:
β∗ =

1
λC

maxλG
max

, (8)

where λC
max is the largest eigenvalue of the covariance matrix C of the data and

λG
max is the largest eigenvalue of a matrix G, whose elements are equal to:

grt =
∑

s

hrs

(

hst −
1
M

)

. (9)

5 Experimental Analysis

5.1 Bacteria Dataset

In order to test our approach, we have built a database of 16S rRNA bac-
teria gene sequences. The choice of the bacteria set has been done according
to the current taxonomy [1]. We focused on the bacteria belonging to Phylum
BXII, Proteobacteria; Class III, Gammaproteobacteria: this class includes some
of the most common and dangerous bacteria related to human pathologies. In
the Gammaproteobacteria class there are 14 orders, each of them containing one
or more family. Each family is divided in genera; for each genus we selected the
type strains, as shown in Figure 2.

For each type strain we selected the 16S rRNA gene sequence, which contains
approximately 1400 nucleotides. The resulting 147 sequences were retrieved from
GenBank [33] in FASTA format [15].

Each gene sequence is labelled according to its order in the actual taxonomy.

5.2 Experimental Results

We carried out a set of experimental tests using the algorithm described in the
section 4 with the bacteria dataset of section 5.1. We used both the dissimilarity
matrices obtained from multiple alignment of sequences and pairwise alignment
of sequences in order to compare the results. More specifically, we used two
well known bioinformatic tools: Mega software [34], that implements ClustalW
algorithm, and Emboss tools [35] for Needleman-Wunsch algorithm. In both
situations, we used default options.

We applied a slightly tuned version of Soft Topographic Map algorithm: in
order to speed up processing time, neighbourhood functions associated to each
neuron have been set to zero if they referred to neurons outside a previously
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Fig. 2. Actual taxonomy of the bacteria dataset

chosen radius in the grid. The radius has been put to 1/3 of the side of maps.
As for the other parameters of the algorithm, we put the annealing increasing
factor η = 1.1, and threshold convergence ε = 10−5, as suggested by [27]. After
several tests we chose, as a good compromise between processing time and clus-
tering quality, the final value of inverse temperature equal to 10 times the initial
value, leading as a consequence 25 learning epochs; finally we put the width of
neighbourhood functions σ to 0.5.

We generated several maps of different dimensions, from 8 × 8 up to 20× 20
neurons. The dimensions of the maps were set by considering the number of input
patterns (147 gene sequences) and the number of expected clusters (14 orders in
the taxonomy). We compared each pair of maps of the same dimension obtained
from multiple alignment and pairwise alignment. The results were quite similar
and we can state that the alignment technique does not affect final results.

In Figures 3, 4, 5, we show the results provided by 12×12, 16×16, 20×20 maps,
trained with the dissimilarity matrix using the pairwise alignment. In the maps,
bright areas denote proximity and dark zones represent distance, according to
the U-Matrix style [32].

It should be noticed that in larger maps the units tend to classify homogeneous
patterns better. Namely, comparing the maps we can observe that the number
of bacteria belonging to mixed clusters, i.e units containing bacteria of different
orders, decreases as the number of neurons increases (Figure 6). Therefore, the
20 × 20 map is the most accurate. In all the maps most of the bacteria are
classified according to their order in the actual taxonomy. We can also see that
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Fig. 3. 12 × 12 topographic map of bacteria dataset

Fig. 4. 16 × 16 topographic map of bacteria dataset

bacteria belonging to the order “Enterobacteriales” are split into a series of
adjacent clusters in the central part of the map. This could mean that the order
“Enterobacteriales” could be subdivided into distinct families rather than the
single one of the actual taxonomy (see Figure 2).

Finally, an interesting result is that there are some anomalies that are constant
for all the tests regardless of the chosen map dimension and alignment algorithm.
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Fig. 5. 20 × 20 topographic map of bacteria dataset

Fig. 6. Bacteria in mixed clusters w.r.t. map size

For example, in small maps (not shown here) the “Alterococcus agarolyticus”
bacterium of the “Enterobacteriales” order is incorrectly clustered together with
bacteria of other orders, whereas in larger maps it is isolated in an individual
cluster, usually at the border of the map (e.g. at the lower left corner of Figure 3
and at upper left conrner of Figures 4 and 5). Another interesting example is
given by “Legionella pneumophila” bacterium of “Legionellales” order: that in
all maps is located in a corner of the grid and surrounded by a dark grey area.
This would suggest that it can be considered to have an order of its own. In
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general, we noticed that in the transition from smaller maps to larger ones there
is always a set of bacteria that show the following anomalies:

– bacteria belonging to mixed clusters and far from their homologous bacteria,
– isolated bacteria in a single cluster far from their homologous bacteria.

In the former case, it is possible that those bacteria were either incorrectly
classified or incorrectly registered into GenBank. In the latter, it is very likely
that those bacteria could form new orders or families that have not been discov-
ered by analyzing only phenotypic features.

In conclusion, although the topographic maps have shown a clustering that
generally reflects the current taxonomy, some singular cases have been detected.
The proposed approach is a first attempt to provide an innovative tool to support
the correction of genetic sequence submission systems (e.g. GenBank) and to
build a genotypic features based taxonomy.

6 Conclusions

In recent trends for the definition of bacteria taxonomy, genotypical characteris-
tics are considered very important and type strains are compared on the basis of
the stable part of the genetic code. In this paper the Soft Topographic Map algo-
rithm has been applied to the clustering and classification of bacteria according
to their genotypic similarity. In the similarity measure we have adopted the 16S
rRNA gene sequence, as commonly used for taxonomic purposes. A characteris-
tic of the proposed approach is that the topographic map is built directly from
the genetic data, without using a vector space representation. The generated
maps show that the proposed approach provides a clustering that generally re-
flects the current taxonomy with some singular cases. The map allows an easy
identification of cases that could represent incorrect classification or incorrect
registration in the database. In future research activities we intend to extend
the analysis to other “housekeeping” genes and to combine different genotypical
characteristics in order to obtain finer clustering and classification.
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Abstract. In this study a fuzzy logic classification system was used first to 
discriminate healthy subjects from patients rather than classifying those using 
Brunnstrom stages. Decision making was performed in two stages: feature 
extraction of gait signals and the fuzzy logic classification system which is used 
Tsukamato-type inference method. According to our signal feature extraction 
studies, we focused on temporal events and symetrical features of gait signal. 
Developed system has six inputs while four of them for temporal features 
evaluation rule block and two of them symmetrical features evaluation rule 
block. Our simulation test results showed that proposed system classify 
correctly 100% of subjects as patient and healthy elderly. The correlation 
coefficient was found 0.85 for classification to subjects to correct Brunnstrom 
stages. The results show that classifying patients becomes increasingly difficult 
linearly according to hemiplegia’s severity.  

Keywords. Fuzzy logic classification, rehabilitation, hemiplegic gait. 

1   Introduction  

Gait quantification remains essential for monitoring and functional recovery during 
the rehabilitation process. Motor system recovery is quantitatively classified into 
Brunnstrom method’s six stages [1]. Synergistic movements convert to non-synergic 
movements between Brunstromm stages III and IV. Thus, isolated joint movements 
actually move in unison. Post-stroke hemiplegic patients with Brunnstrom stage III 
show maximum spasticity that decreases with motor system recovery. A common 
procedure starts when a physiotherapist empirically observes the patient’s gait and 
evaluates the rehabilitation training’s effectiveness. Previous studies carried more 
precise kinetic and kinematic analysis using optoelectronic systems and forceplates 
[2], [3]. These systems, although powerful and flexible, are expensive and require 
both high technical skills and specialized experience to operate. The system must 
offer repeatability and flexibility (i.e. portable data acquisition system) based on 
accelerometry. We’ve worked on gait quantification in healthy elderly subjects and 
post-stroke hemiplegic (PSH) patients using both accelerometry techniques and 
advanced signal processing methods. We will explain our latest work on hemiplegic 
patient gait’s classification with fuzzy logic (FL) using accelerometer-based 
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acceleration. FL was discovered in 1965 by Zadeh [4]. Zadeh’s publication of a 1969 
paper applying fuzzy sets to biology was the first application of fuzzy logic to the 
medical field. The study aims to assess gait after stroke for both diagnosis support and 
therapy applications. Decision-making was performed in the gait signal’s feature 
extraction and FL system using Tsukamato-type inference method. According to our 
signal feature extraction studies, we focused on the gait signal’s temporal events (TE) 
and symmetrical features (SF). The developed FL classification system contains  
six inputs: four for TE rule block and two for SF rule block. The system classifies 
subject gaits as either healthy or hemiplegic gait. Additionally, the system matches 
hemiplegic gait to correct Brunnstrom stages. The signal feature extraction 
determined the FL system inputs upon examining the four hemiplegic gait 
acceleration (HGA) signal types at each Brunnstrom stage and healthy elderly gait 
signal. The entire rule blocks and some membership functions were rearranged to 
improve diagnostic and classification accuracy. We obtained conclusions concerning 
feature saliency of HGA signal classification via FL system analysis. Classification 
accuracies evaluated our system’s performance. Our results confirmed our proposed 
model’s potential in classifying HGA signals. The accelerometry technique is widely 
used clinically to investigate gait’s body motion in healthy and PSH patients. Gait 
analysis via accelerometric records is one of the most important tools for diagnosing 
locomotion defects. Daily activity classification (standing, sitting, lying, and walking) 
was previously done using combined DC and AC acceleration signals.  

Quantitative data gait analysis was traditionally a challenging endeavor. The main 
challenges were high dimensionality, temporal dependence, high variability, and 
nonlinear relationships. Responding to these challenges, summary statistics (e.g. 
mean, variance, correlations) and wave-form parameterizations (e.g. peak, amplitude), 
provided limited additional insight into gait data beyond what was observable from 
bivariate plots. It is now recognized that there’s a lack of effective and robust 
techniques to reduce gait data [5, 6] and to extract information from highly-correlated 
gait data variables [7]. Researchers sought out novel ways to manipulate and interpret 
gait data. These new ventures originated from ideas from computer science, 
psychology, cognitive science, physics, and engineering. Sekine et al. demonstrated 
that the wavelet transform method effectively classified walking types for young 
subjects (but not for elderly subjects since gait changes with age) [8]. Locomotion is 
reduced for the elderly, compared to young people. The impact acceleration’s 
amplitude of a heal strike decreases with age. The elderly also shuffle during 
locomotion, increasing the acceleration’s complexity. Thus, it is extremely difficult 
classifying the PSH patient’s walking type by using previous methods.   

Fuzzy analysis treats variability as non-probabilistic uncertainty while statistical 
methods view variability as probabilistic randomness. Fuzzy set theory plays an 
important role in dealing with uncertainty when making decisions in medical 
applications. Thus, fuzzy sets continue attracting growing attention and interest in 
modern information technology, production technique, decision-making, pattern 
recognition diagnostics, data analysis [9-11]. Successful implementations of FL in 
biomedical engineering were previously reported for classification [12-16].  
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2   Methods   

2.1   Measurement System   

Figure 1 shows a schematic diagram of the measurement system [8]. An 
accelerometer device was constructed from three uni-axial accelerometers (type 3031-
010, IC-Sensors, USA, size: 4x4x3mm; weight: 0.3 g; range: ±10 g; frequency 
response: 0-500 Hz). These were mounted orthogonally to record signals in the 
anteroposterior (x), lateral (y), and vertical (z) directions. The accelerometers were 
calibrated by measuring their outputs under controlled inclination. After the accel-
erometer device had been calibrated it was fixed on an acrylic plate that had two slits 
for a waist belt. It was fastened by an elastic waist belt to the subject’s back in the 
lumbosacral region of the vertebral column, close to the subject’s center of gravity 
while standing [8]. The accelerometer unit was connected to a portable data logger 
(Micro 8, Shimadzu, Japan) via an interface circuit. This data logger consisted of a 
CPU, a 10-bit A/D converter, an IC card interface, and a removable 2-MB IC memory 
card as shown in Figure 1. The interface circuit included three amplifiers and three 
second-order analog Butterworth lowpass filters as an anti-aliasing filter for each 
direction. The cutoff frequency was 500 Hz. The accelerometer outputs were digitized 
at a sampling rate 1024 Hz by the data logger and were recorded on the IC memory 
card. After the measurements were completed, the data was transferred via a card 
reader to a personal computer for further analysis.   

2.2   Experimental Design   

The experiments were performed with 28 poststroke hemiplegic (PSH) patients (19 
male, 9 female, age 66± 11 years, height 1.54 ± 0.09 m, weight 54.6 ± 9.4 kg; mean ± 
SD). In this study, the PSH patients who participated were Brunnstrom stage III to VI 
(III: 12, IV: 9, V: 4 and VI: 3). The patients walked along a corridor at free speed with 
a cane and/or short leg brace, which were used during physical training. For 
comparison, seven healthy elderly subjects (two male, eight female, age 61 ± 5.1 
years, height 1.49 ± 0.05 m, weight 49.7 ± 1.6kg; mean ± SD) participated in this 
study. The healthy elderly subjects walked at free speed, wearing their own shoes and 
without any special instructions. This study was approved by the local ethics 
committee, and all the subjects gave written informed consent before examination.   

  

Fig. 1. Schematic diagram of measurement system  
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3   Classification of Hemiplegic Gate with Fuzzy Logic  

Walking is a complicated cyclic set of movements requiring the coordination of many 
muscles. Repetitive motion is achieved via this coordination. An accurate and detailed 
mathematical model of this system is unavailable due to limited knowledge of the 
physiological system, making it impossible to apply traditional methods. We used 
statistical analysis to produce our own inputs plus membership functions before 
developing a fuzzy logic system capable of classifying hemiplegic gate. The gait 
signal’s temporal features are walking speed, stride period, cadence, stride length, 
stance period, swing period, stance/swing ratio and double support. The gait signal’s 
measurable features are walking speed, cadence, step length, double step length, step 
time difference, and double step time difference. Measurement and variable analysis 
are unable to characterize hemiplegic patients’ erratic locomotion [17] because the 
relevant temporal information in hemiplegic gaits is included while measuring the 
walking speed. Prior studies revealed that the hemiplegic gate’s temporal variables 
relate to motor recovery according to defined stages. Hemiplegic patients, even those 
with good motor recovery, by comparison walked more slowly. The patient’s clinical 
 

   

Fig. 2. Gait acceleraiton signals, top to bottom; Healthy STVI, STV, STIV, STIII 
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status matched the walking speed, which slowed down with the motor deficit’s 
increasing severity. Investigations [17-19] revealed that walking speed is an important 
temporal variable of hemiplegic gait. Several algorithms exist to compute step times 
and quantify symmetry [20,21].  

As previously mentioned, determining the classification system’s inputs, we 
conducted several statistical analyses on gait features. Figures 2 and 3 show our 
results comparing walking speed: Figure 2 shows anteroposterior acceleration signals 
of elderly subjects, the top channel belonging to elderly patients while the bottom 
belongs to Brunstromm stage III patients.   

Figure 3 shows step time comparison of healthy patients and various hemiplegic 
stage patients. We statistically examined all acceleration signals, anteroposterior (x), 
lateral (y), and vertical (z). Figures 4 and 5 illustrate the anteroposterior signal mean 
amplitudes of each subject and each group, respectively. Brevity prevents us from 
publishing all statistical results. We defined our fuzzy system structure after 
comparing our results. The fuzzy system structure identifies the fuzzy logic inference 
flow from input variables to output variables. The input interface’s fuzzification 
translates analog inputs into fuzzy values. The fuzzy inference starts in rule blocks 
that contain linguistic control rules. The rule block’s outputs are linguistic variables. 
The defuzzification in the output interfaces translates them into analog variables.  
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Fig. 3. Step time comparison of subjects (E:Elderly, HST6: Brunnstrom stage VI, HST5: 
Brunnstrom stageV, HST4:Brunnstrom stage IV, HST3:Brunnstrom stage III)  
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Fig. 4. Anteroposterior signal mean amplitude values for each subject 
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Fig. 5. Anteroposterior signal mean amplitudes of each groups (SD:Standart deviation)  

Figure 6 shows the entire fuzzy system including input and output interfaces, and rule 
blocks. The connecting lines signify data flow. 

The developed system contains two blocks: one evaluates signal amplitude features 
and contains four inputs; XAR, XAM, YVR, and ZLR. The other block evaluates 
signal symmetries and contains two inputs: XASI and XAST. These symbols 
represent the following variables:  

 
XAR :Anteroposterior amplitude  
XAM :Anteroposterior mean amplitude  
YVR :Vertical amplitude  
ZLR :Lateral amplitude  
XASI :Anteroposterior signal symmetry index  
XAST :Anteroposterior step time  
 
All input membership functions contain three linguistic terms. The rule bases 

contain the fuzzy logic system’s control strategy. The rules ‘if’ part describes the 
situation. The ‘then’ part describes the fuzzy system’s response to the situation. The 
rules use the degree of support method to weigh each rule according to its importance. 
The first rule block contains 81 rules while the second contains only 9.  

   

Fig. 6. Structure of the Fuzzy Logic classification  
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Fig. 7. Input membership functions (A) XAR membership function (B) XAM membership 
functions (C) YVR membership functions (D) ZLR membership functions (E) XASI 
membership function (F) XAST membership function  

The system contains two secret membership functions with five linguistic terms 
with names such as “Pcond” and “Scond.” Each of these secret functions contains five 
terms accepted as the main rule block’s inputs. Thus, the main rule block contains 25 
rules, each containing five different answers pointing to the subject’s gait ability. All 
rule blocks were constructed manually. Physical rehabilitation experts checked the all 
rules and evaluate the results one by one for each of them. Brevity prevent us from 
publishing full of first rule block in Table 1. Table 2 shows symmetri evaluation rules 
while Table 3 shows main rules. The system output membership function contains 
five linguistic terms as healthy, classification stages of hemiplegic gate. Figure 7 (a), 
(b), (c), and (d) show input membership functions.  

Table 1. Some part of signal amplitudes rules 

 IF THEN 
XAM XAR YVR ZLR Pcond 
low low low low Verybad 
low low low medium Verybad 
low low low high Bad 
low low medium low Verybad 
low low medium medium Bad 
low low medium high Notgood 
low low high low Bad 
low low high medium Notgood 
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Table 2. Symmetri evaluation rules 

IF THEN 
XASI XAST Scond 
low low Good 
low medium Notgood 
low high Bad 

medium low Notgood 
medium medium Bad 
medium high Verybad 

high low Bad 
high medium Verybad 
high high Worst 

Table 3. Main rules 

IF THEN 
Pcond Scond Classification 
Good Good Healthy 
Good Notgood ST6 
Good Bad ST6 
Good Verybad ST5 
Good Worst ST4 

Notgood Good Healthy 
Notgood Notgood ST6 
Notgood Bad ST6 
Notgood Verybad ST5 
Notgood Worst ST4 

Bad Good ST6 
Bad Notgood ST6 
Bad Bad ST5 
Bad Verybad ST4 
Bad Worst ST4 

Verybad Good ST6 
Verybad Notgood ST5 
Verybad Bad ST4 
Verybad Verybad ST4 
Verybad Worst ST3 
Worst Good ST5 
Worst Notgood ST5 
Worst Bad ST4 
Worst Verybad ST3 
Worst Worst ST3 

 
The prepared software we used calculates the inference in two steps: input 

aggregation and degree of support composition. Aggregation uses fuzzy logic 
operator to calculate the ‘if’ part’s result of a production rule when the rule receives 
more than one input conditions. One of the linguistic conjunctions, ‘and’ or ‘or,’ link 
multiple input conditions. Composition links the entire condition’s validity with the 
degree of support. The developed software uses a composition product operator to 
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calculate the rule’s result. The composition uses the fuzzy logic operators to link the 
input condition to the output condition. Standard max-min and max-dot inference 
methods dictate that the rule’s consequence is equally true as the condition. Fuzzy 
reasoning or fuzzy algorithm is developed to implement fuzzy implication relations. 
We used Tsukamoto-type fuzzy reasoning. This reasoning, proposed by Tsukamoto 
[22], requires that fuzzy set’s membership functions are monotonic. In order to 
illustrate Tsukamoto-type fuzzy reasoning, two fuzzy rules from first rule block 
below are used: 

 
x x x x x x

1

2

: if is and is and is and  is then is

: if is and is and is  and  is then is

: if is and is and is  and  is then is

XAM A XAR B YVR C ZLR D PCOND E

XAM low XAR low YVR low ZLR low PCOND verybad

XAM low XAR low YVR low ZLR medium PCOND ver

ℜ

ℜ
ℜ

……………

n n n n n n

0 0 00

: if is and is and is and  is then is

fact : is and is  and is and is

ybad

XAM A XAR B YVR C ZLR D PCOND E

XAM XAM XAR XAR YVR YVR ZLR ZLR

ℜ
……………

 

 
Using Tsukamoto’s method, assuming that Z1 is the first rule of the firing degree 

where W1=C1 (Z1) and the Z2 is the second rule of the firing degree where W2=C2 
(Z2), we expressed a crisp output as weighted average. Equation 1.shows the crisp 
output.   

                                                     (1)  

4   Results and Discussion  

Fuzzy logic brings new possibilities into control, modeling, data analysis, diagnostics, 
decision-making, and other applied fields in the biomedical sciences. We used fuzzy 
logic classification system first to discriminate healthy subjects from patients rather 
than classifying those using Brunnstrom stages. We measured the acceleration signals 
using the accelerometry technique during walking. Developed fuzzy systems were 
previously tested with training data and blind approach data. Simulation studies must 
be conducted to validate the classification results.   

We used correlation analysis to measure the association degree between the two 
data sets that are recorded manually for evaluation results and Fuzzy Logic 
Classification (FCA). The Pearson product moment correlation coefficient, r, 
measures the strength of the linear relationship between two variables. The mean 
correlation coefficient was 0.85 (P<0.001) for the entire cohort. 

Thirty-three patients were used for these statistics. Coefficient of determination 
value, r2, was 0.72. We used SPSS 12.0 for Windows (Apache Software Foundation) 
for all calculations. 
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Fig. 8. FCA results comparison with Real Data (RD) 

Figure 8 compares the results obtained by using random patient files. Our 
simulation test results showed that proposed system classify correctly 100% of 
subjects as patient and healthy elderly.  The main problem for system is to classify 
post stroke paitents to correct Brunnstrom stages. Figure 8 clearly shows the problem. 
The difficulty is getting bigger trough to STIII. Just 5 of 11 patients from STIII were 
succesfully classified. 3 of 11 STIII patients were classified STIV patient while 2 of 
11were classified STV and 1 of 11 was classified STVI. The last one is also the worst 
result for this system. When we examined the data of that patient, we realised that the 
patient data was very smiliar to STVI data. Actually the problem is here is strongly 
related to our inputs to system. In this point we can say we need to find new signal 
features for gait analysis to correctly discriminate to patients to Brunnstrom stages. 
One of our future work is feature exraction of gait signal again. 

Beside the above mentioned, this study shows the possibility of using fuzzy logic 
to discriminate healthy subjects or patients. Successful classification of patients using 
Brunnstrom stages, because of unstable signal behavior, is extremely difficult. 
Classifying patients becomes increasingly difficult linearly according to hemiplegia’s 
severity. Our results suggest that combination of artificial intelligence techniques may 
be suitable to assess the hemiplegic gate. Besides fuzzy systems, neural nets and 
adaptive neuro-fuzzy inference systems can be used for effective physical therapy, 
our current research interest.  
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Abstract. Real-time road sign recognition has been of great interest for
many years. This problem is often addressed in a two-stage procedure
involving detection and classification. In this paper a novel approach to
sign representation and classification is proposed. In many previous stud-
ies focus was put on deriving a set of discriminative features from a large
amount of training data using global feature selection techniques e.g.
Principal Component Analysis or AdaBoost. In our method we have cho-
sen a simple yet robust image representation built on top of the Colour
Distance Transform (CDT). Based on this representation, we introduce
a feature selection algorithm which captures a variable-size set of local
image regions ensuring maximum dissimilarity between each individual
sign and all other signs. Experiments have shown that the discrimina-
tive local features extracted from the template sign images enable simple
minimum-distance classification with error rate not exceeding 7%.

1 Introduction

Recognition of traffic signs has been a challenge problem for many years and
is an important task for the intelligent vehicles. Although the first work in this
area can be traced back to the late 1960’s, only in the 1990’s, when the idea
of autonomous intelligent navigation was popularised, significant advances were
made. Nevertheless, there is still an apparent gap between what human and
machine can do, making the attentive driver an irreplaceable guarantor of safety
in the traffic environment.

Road signs have unique properties distinguishing them from the multitude
of other outdoor objects. These properties were benefited from in numerous
attempts to build an efficient detection and recognition system. In the majority of
published work a two-stage sequential approach was adopted, aiming at locating
the regions of interest first, and subsequently passing them to the classifier [1,2,3].
To detect possible sign candidates traditionally colour information is extracted
[1,2], followed by the geometrical edge [1,4] or corner analysis [2]. Alternative
approaches utilise distance transform [5] or neural networks [6]. In several studies
the geometrical tracking aspect was given consideration [1,6,7]. However, reliable
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prediction of the geometrical properties of signs from a moving vehicle is complex
in general as the vehicle’s manoeuvres are enforced by the actual traffic situa-
tion and therefore cannot be apriori known. To overcome this problem in the
absence of on-line external sensor measurements, the above approaches impose
simplified motion model, e.g. assuming constant velocity. In the classification
stage a pixel-based approach is often adopted and the class of the detected sign
is determined by the cross-correlation template matching [1] or neural network
[2]. Feature-based approach is used for instance in [3]. More recently, Bahlmann
et al. [9] adopted the ideas of Viola and Jones [8] to detect traffic signs based
on the colour-sensitive Haar wavelet features and AdaBoost framework. In the
classification stage, assuming Gaussian class distribution and the independence
of consecutive frame observations, Bayes classifier is used to fuse the individual
observations over time. Only 6% error rate is reported using this method. Pacĺık
et al. [10] introduced a different strategy built upon the claim that a candidate
sign can be represented as a set of similarities to the stored prototype images.
For each class similarity assessment is made with respect to a different set of
local regions refined in the training process.

In this work we have developed a two-stage road sign detection and classifi-
cation system. Figure 1 shows an example frame from video input with a road
sign detected and recognised. More specifically, our detector is a form of well-
constrained circle/regular polygon detector introduced in [4], augmented with the
appropriate colour pre-filtering. In the classification stage, motivated by [10], we
introduce a novel feature selection algorithm built on top of the Colour Distance
Transform (CDT) image representation. We show that although our algorithm
generates sign descriptors of variable dimensionality, individual classification
scores can be made directly comparable due to the global selection criterion used.

Fig. 1. Screenshot from our traffic sign recognition
system in action

In consequence the proposed
method seems to be a more
natural way of discrimination
among signs, as not the same
amount of information is nec-
essary to tell different classes
apart. The rest of this paper
is organised as follows: In sec-
tion 2 traffic sign detection and
tracking are briefly described.
Sections 3 and 4 discuss the
main contributions of this work,
discriminative region selection
and sign classification. Section
5 presents experimental results
on the real traffic video se-
quences. Finally, conclusions
are drawn in section 6.
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2 Sign Detection and Tracking

Our road sign detector is triggered every fixed number of frames to capture
new candidates emerging in the scene. It makes use of the apriori knowledge
about the model signs, which are uniquely identified in terms of the general
shape, colour and contained ideogram. Based on the first two properties four
sign categories corresponding to the well-known semantic families are identified:
instruction (blue circular), prohibitive (red circular), cautionary (yellow triangu-
lar), and informative (blue square) signs. As we believe the shape of a sign and
its boundary colour are sufficient visual cues to locate the candidates reliably,
the proposed detector operates on the colour gradient and edge maps of the
original video frames. Furthermore, it uses a generalisation of Hough Transform
introduced in [4], which is motivated by the fact that targeted objects are all
instances of equiangular polygons, including circles that can be though of as such
polygons with the infinite number of sides. Original regular polygon transform is
augmented with the appropriate image preprocessing intended to enhance edges
of specific colour. For each RGB pixel x = [xR, xG, xB ] and s = xR + xG + xB ,
a simple colour enhancement is provided by a set of transformations:

fR(x) = max(0, min((xR − xG)/s, (xR − xB)/s))
fB(x) = max(0, min((xB − xR)/s, (xB − xG)/s))
fY (x) = max(0, min((xR − xB)/s, (xG − xB)/s))

. (1)

First two transforms extract these parts of the image where the red or blue
component respectively dominate the most over both remaining components.
The third formula has similar meaning, but as the pure yellow colour has equal
value in the red and green channels and zero in blue channel, it attempts to
enhance pixels where both former components dominate the most over the latter.

In the resulting images red, blue, and yellow edge maps are extracted by a
simple filter which for a given pixel picks the highest difference among the pairs
of neighbouring pixels that could be used to form a straight line through the
middle pixel being tested. Obtained values are further thresholded and only in
the resulting edge pixels values of directional and magnitude gradient are calcu-
lated. This technique is adequate to our problem as it enables quick extraction of
edges and avoids expensive computation of the whole gradient magnitude map
which, with the exception of the sparse edge pixels, is of no use to the shape
detector. For a given pair of gradient and edge images associated with colour
c, circle and regular polygon detectors yield a number of possible sign shapes.
This number depends on the actually set detector’s sensitivity defined by a fixed,
relatively low threshold value specifying a percentage of the maximum possible
number of votes which would be accumulated in presence of the regular shape of
known radius and ideally sharp gradient along the contour. As each candidate
has known shape (either circle, or equilateral triangle, or square), and border
colour c, detector serves as a pre-classifier reducing the number of possible tem-
plates to analyse to the ones contained in either category. When signs are in the
cluttered background, a number of false candidates may be produced. To address
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this problem, an additional step is taken to verify the presence of sign-interior
colours appropriate for the just found category.

Once a candidate sign is detected, exhaustive search in consecutive frames is
unnecessary. Assuming motion with constant velocity along the optical axis of
the camera, we have employed a Kalman filter [11] to track a sign detected in a
previous frame of an input video. The state of the tracker is defined by (x, y, s),
where x, y are coordinates of the sign’s centre in the image, and s is the scale
factor to the standard sign templates. In the current implementation we use the
mean and variance estimates from the Kalman filter to locate the centroid and
the size of the local search region in the next frame. Therefore, computation has
been significantly reduced compared to exhaustive search over the whole image.

3 Image Representation and Feature Selection

Selecting an optimal feature set for a large number of template images is a non-
trivial task. We have experimented with several techniques such as Principal
Component Analysis and AdaBoost. Aiming at retrieving the global variance
of a whole data set, PCA is not capable of capturing features critical to the
individual templates. AdaBoost on the other hand, although generating efficient
classifiers, is not entirely convincing in terms of the fixed cardinality of the feature
set being extracted. Clearly, certain signs are very distinctive and analysis of
only a few small regions enables distinguishing them even among tens of others.
Meanwhile, there are groups of very similar signs that look tightly clustered, even
in a highly multidimensional feature space. This complex nature of similarity
between templates raises a question whether there is sufficient justification for
classifying signs based on the same set of features.

Motivated by [10], we propose here an algorithm that relaxes the above limi-
tation by extracting for each model sign a limited number of local image regions
in which it looks possibly the most different from all other templates residing in
the same category. The same discriminative regions are further used to compare
a video frame image with the templates and make a reliable on-line classifica-
tion. Below we first outline the process of converting the raw bitmap images
into a more suitable discrete-colour representation. Second, we introduce the
notion of local image region and dissimilarity. Finally, the implementation of the
discriminative region selection algorithm is formalised and discussed.

3.1 Colour Discretisation

Detected sign images come as rectangular regions containing the target object
and, depending on its shape, also background fragments, as depicted in Fig. 2.
In order to prepare the candidate for classification, the image is first scaled to a
common size, typically 60× 60 pixels. Undesirable background regions are then
masked out using the information about the object’s shape and orientation pro-
vided by the detector [4]. It is important to note that the full colour spectrum
is far more than necessary to identify the object, as the template signs contain
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only up to four distinctive colours per category. Therefore, the candidate images
are finally subject to colour discretisation as follows:

1. For the template sign images, which already contain ideal colours, discreti-
sation merely aims at changing the physical representation from 24-bit RGB
bitmap to 2-bit image with the specific colour indices encoded. A set of
thresholds similar to these used in [12] is applied to the templates in Hue-
Saturation-Value space to complete this task.

2. For on-line colour segmentation category-specific colours are learned from
a set of training images taken from the real video sequences. Expectation
Maximisation algorithm [13] is employed to estimate an optimal Gaussian
Mixture model for each colour. The procedure is restarted several times for
the increasing number of randomly initialised Gaussian components to refine
the estimation. The best model in terms of mean data likelihood is selected.
In order to speed up the on-line segmentation, off-line learned models are
used by a Bayes classifier to assign the appropriate colour to each possible
RGB triple, yielding a look-up table with 2553 entries for each sign category.
Sample results of on-line colour discretisation are illustrated in Fig. 2.

Fig. 2. Sample images obtained by sign detector before (above) and after (below)
background masking and colour discretisation; 2 bits encode colours in each image

3.2 Discriminative Local Regions

The space of regions is obtained from the colour-segmented template sign images.
First, for each discrete colour present in the image a separate distance transform
[14] is computed, producing images similar to these shown in Fig. 3. In DT
computation pixels of given colour are simply treated as feature pixels and all
the remaining ones as non-feature pixels. (3, 4) Chamfer metric [15] is used to
approximate Euclidean distance between the feature pixels. To emphasise the
strong relation to colour, we call this variant of DT a Colour Distance Transform
(CDT). In the next step image is divided into 4 × 4-pixel regions. Within each
region rk local dissimilarity between the images I and J can be calculated using
discrete colour image of I and CDT images of J by averaging pixel-wise distances:

drk
(I, J) =

1
m

m∑

t=1

dCDT (I(pt), J(pt)) , (2)

where for each of m pixels pt contained in the region, distance dCDT (I(pt), J(pt))
is picked from the appropriate CDT image of J , depending on the colour of this
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pixel in I. Let us also denote by d̂S(I, J) and d̂S,W(I, J) a normal and weighted
average local dissimilarities between the images I and J computed over regions
rk ∈ S (weighted by wk ∈ W):

d̂S(I, J) =
1
M

M∑

k=1

drk
(I, J) , (3)

d̂S,W(I, J) =
∑M

k=1 wkdrk
(I, J)

∑M
k=1 wk

. (4)

Obviously, as distance transforms for template signs are pre-computed, on-line
comparison between the corresponding regions of the detected candidate image
and model sign images can run extremely fast.

(a) (b) (c) (d)

Fig. 3. Colour distance transform images: original discrete colour image (a), black CDT
(b), white CDT (c), red CDT (d); darker regions denote shorter distance

3.3 Region Selection Algorithm

Assuming pre-determined category of signs C = {Ti : i = 1, . . . , N} and a
candidate image xj , our goal is to determine the class of xj by maximising
posterior:

p(Ti|xj , θi) =
p(xj |Ti, θi)p(Ti)
∑N

i=1 p(xj |Ti, θi)
. (5)

Our objection to using a uniform feature space for classification makes us envis-
age different model parameters θi = (Ii,Wi) for each template Ti. Ii denotes an
indexing variable determining the set Si of regions to be used and Wi is a vector
of relevance corresponding to the regions rk ∈ Si selected by Ii. In order to learn
the best model parameters θ∗i , the following objective function is maximised:

O(θi) =
∑

j �=i

d̂Si(Tj , Ti) . (6)

In other words, the regions best characterising a given sign are obtained through
maximisation of the sum of local dissimilarities between this sign’s template and
all the remaining signs’ templates. In presence of model images only, each term
d̂Si(Tj , Ti) as a function of the number of discriminative regions is necessarily
monotonically decreasing. As a result, there would always be just a single best
region or a few equally good regions maximising (6). In practice, such sign de-
scriptors are unlikely to work well for video frames, typically affected by a severe
noise, where more support in terms of the number of image patches to match
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is required to make a reliable discrimination. Our objective function, as de-
scribed below, is hence only optimised up to the specified breakpoint, yielding a
representation which is richer and thus more trustworthy in a real-data scenario.

1. input: sign category C = {Tj : j = 1, . . . , N}, target template index i,
region pool R = {rk : k = 1, . . . , M}, dissimilarity threshold td

2. output: target set Fi of regions with associated weights
3. initialise an array of region weights W = {wk : wk = 0, k = 1, . . . , M}
4. for each template Tj ∈ C, j 
= i do

(a) find region r
(1)
j such that d

r
(1)
j

(Tj , Ti) = maxk drk
(Tj , Ti)

(b) initialise ordered region list Fj = [r(1)
j ] storing the selected regions to

discriminate between templates Ti and Tj

(c) initialise remaining feature pool Pj = R \ {r(1)
j }

(d) initialise region counter l = 1
(e) while not STOP do

i. increment region counter l = l + 1
ii. for each region rk ∈ Pj construct a region list Sk = Fj + rk and pick

region r
(l)
j maximising d̂Sk

(Tj , Ti)

iii. insert region r
(l)
j at the beginning of the selected region list Fj =

r
(l)
j + Fj

iv. update the remaining region pool Pj = Pj \ {r(l)
j }

v. STOP if d̂Fj
(Tj , Ti) < tddr

(1)
j

(Tj , Ti)

(f) update found region weights wk = wk + pk for all regions rk ∈ Fj , where
pk denotes rank (position in the list) of the k-th region

5. build target region set Fi = {(rk, wk) : wk > 0}

Similarly to Pacĺık et al. [10], in the model training stage we have adopted ele-
ments of a sequential forward search strategy, a greedy technique from the family
of floating search methods [16]. However, both approaches differ significantly in
the two main aspects. First, we think that learning the signs from the real-life
images is counter-intuitive as the publicly available templates characterise the
respective classes fully. Second, we believe that the possible within-class appear-
ance variability may well be accounted for by a robust distance metric, as the
one introduced in (2-4), instead of being learned. Our implementation then picks
a given template sign and compares it to each of the remaining templates. In
each of such comparisons the algorithm loops until the appropriate number of
local regions are found. It should be noted that at a given step of the loop the
most dissimilar region is fixed and removed from the pool of available regions.
Moreover, at the k-th step the distance between the considered image and the
image being compared to is measured with respect to the joint set comprised
of the new k-th region and all previously found regions. At the end of the loop
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an ordered list of regions is produced, sorted by their decreasing discriminative
power. Each pairwise region set build-up is controlled by a global threshold, td,
specifying the minimum allowed dissimilarity between any pair of templates be-
ing compared as a percentage of the maximum possible dissimilarity, i.e. the one
for just a single most discriminative region. Such a definition of STOP criterion
ensures that the same amount of dissimilarity between any pair of templates is
incorporated in the model. This in turn allows us to treat different sign classes as
directly comparable, irrespective of their actual representation. The final set for
each class is constructed by merging the pair-specific subsets which is reflected
in the region weights carrying the information on how often and with what rank
each particular region was selected.

For each sign the above algorithm yields a set of its most unique regions.
It should be noted that in the final step, depending on the actual dissimilarity
threshold specified, certain number of regions will be found completely unused,
and hence discarded. An example of our feature selector’s output is depicted
in Fig. 4. Obtained discriminative region maps clearly show that different signs
are best distinguishable in different fragments of the contained pictogram. It
can also be seen that although the same value of global parameter td was used,
different numbers of meaningful regions remained.

Fig. 4. Sample triangular template images (above), and discriminative regions obtained
for parameter td = 0.7 (below); brighter regions correspond to higher dissimilarity

4 Temporal Classifier Design

A road sign classifier distinguishes between the sign classes contained in a cate-
gory pre-determined in the detection stage, based on the discriminative feature
representation unique for each particular sign. For simplicity two assumptions
are made: 1) the dissimilarity between each sign and all other same-category
signs is Gaussian-distributed in each local region and independent of the dissim-
ilarities in all other regions characterising this sign, and 2) class priors P (Ti) are
equal. In such a case Maximum Likelihood theory allows us to relate the max-
imisation of likelihood p(xj |Ti, θi) to the minimisation of distance ̂dSi,Wi(xj , Ti)
over i. Therefore, for a known category C = {Ti : i = 1, . . . , N}, and observed
candidate xt at time t, the winning class L(xt) is determined from (5):

L(xt) = argmax
i

p(xt|Ti, θi) = argmin
i

̂dSi,Wi(xt, Ti) , (7)
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where the elements of the region set Si and the corresponding weights in Wi

denote the ones learned in the training stage for template Ti.
When a series of observations from a video sequence is available, it is reason-

able to integrate the classification results through the whole sequence over time,
instead of performing individual classifications. Hence, at a given time point t our
temporal integration scheme attempts to incorporate all the observations made
since the sign was for the first time detected until t. Denoting observation rele-
vance by q(t) and assuming independence of the observations from consecutive
frames, the classifier’s decision is determined by:

L(Xt) = arg min
i

t∑

k=1

q(t) ̂dSi,Wi(xk, Ti) . (8)

We have observed that the signs detected in the early frames are inaccurate
and contain blended pictograms due to the low resolution. Also as colours tend to
be paler when seen from the distance, previously discussed colour discretisation
exposes severe limitations, unless performed for later frames depicting candidate
sign already grown in size. To address this problem, we adopt the exponential
observation weighting scheme from [9] in which relevance q(t) of observation xt

depends on the candidate’s age (and thus size):

q(t) = bt0−t , (9)

where b ∈ (0, 1] and t0 is the time point when the sign is for the last time seen.

5 Experiments

To evaluate our traffic sign recognition system, experiments were performed on
the real data collected on Polish roads. Sample video sequences were acquired
from a moving car with a DV camcorder mounted firmly in front of the wind-
screen, and subsequently divided into short clips for off-line testing. Video con-
tent depicts the total of 144 signs and includes urban, countryside, and motorway
scenes in natural lightning during daytime, with numerous signs appearing in
shade and in cluttered background. Table 1 illustrates obtained results.

As seen in Tab. 1, obtained real-time classification error rate does not exceed
7%, making our method comparable to the recently published ones [9,10]. How-
ever, it should be noted that our template database contains significantly more
signs than in any of the previous studies. Direct comparison with the respective
algorithms is not possible as neither the test data nor the details of its acqui-
sition are made available. Repetitions of the experiment for different values of
dissimilarity threshold confirmed our expectations. For each category of signs
different thresholding provides the best results, which depends not only on the
category size, but primarily on the diversity of ideograms in the contained signs.
The following observation is vital at this point. The optimal threshold for each
category must strike a balance between the two: maximising template signs’ sep-
arability and the reliability of the obtained dissimilarity information in the real
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Table 1. Recognition performance for different values of dissimilarity threshold td and
temporal weight base b = 0.8; number of classes in each category: red circles (RC),
blue circles (BC), yellow triangles (YT), and blue squares (BS) is given in parentheses
and the best classification rate is highlighted

td RC (55) BC (25) YT (42) BS (13) overall (135)

detected – 86.4% 100.0% 96.3% 94.4% 95.8%

0.9 100.0% 90.6% 73.6% 91.2% 85.5%

recognised 0.7 100.0% 100.0% 88.7% 70.6% 87.7%
0.5 89.5% 96.9% 79.2% 58.3% 80.4%

best 100.0% 100.0% 88.7% 91.2% 93.5%

data context. Very high threshold values lead to separation of a very few good
regions for a particular model sign, however such sparse information may not be
sufficiently stable to classify correctly a possibly distorted, blurred, or occluded
object in a video frame. Very low threshold values on the other hand introduce
information redundancy by allowing image regions that contribute little to the
uniqueness of a given sign. In a resulting feature space signs are simply more
similar to one another and hence more difficult to tell apart.

In terms of the detection, most of failures were caused by the insufficient con-
trast between a sign’s boundary and the background, especially for pale-coloured
and shady signs. In a few cases this low contrast was caused by the poor quality
of the physical target objects rather than their temporarily confusing appearance.
Single detection errors emerged when two signs were mounted closely on one pole.
In this particular situation candidate objects may be confused with each other, as
the local search region of one candidate always contains at least part of its neigh-
bour. Detection proved to be the computationally most expensive part of the sys-
tem, however processing speed of the entire algorithm including classification is
10-20 fps on a standard PC, depending on the actual difficulty of the scene.

After closer investigation we observed that approximately one in three classi-
fication errors resulted from confusion between the nearly identical classes, e.g.
pedestrian crossing and bicycle crossing. Differences between such signs were
found difficult to capture, resulting sometimes in the correct template receiving
the second best score. Colour segmentation appeared to be resilient to variations
of illumination, leading directly to failure in only a few cases when the signs were
located in a very shady area or were themselves of poor quality. This can be a
proof of usefulness of Gaussian Mixture colour modelling. Remaining failures
can be attributed to the limitations of the detector. Although distance trans-
form, utilised in dissimilarity computation, and observation weighting neutralise
inaccurate detection effects to a large extent, they are of little help in presence of
certain phenomena consistent in their nature. Two examples of such situations
are remarkable:

1. Some signs’ ideograms consist of edges that may actually be easier to detect
than the boundary. This may cause detected shape to appear clipped.
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2. Signs very close to the camera being distorted in perspective projection
usually receive sufficient score in the detector’s accumulator space. These
signs are yet still detected as regular shapes, resulting in the inaccurate
shape estimation.

As indicated in the previous section, in the early video frames, due to the
low resolution, delimitation of sign’s contour and subsequent colour discretisa-
tion are usually less accurate. Frequently the correct decision can be developed
by the classifier from just the last several frames where the sign’s shape is the
most stably detected and its content the most clearly visible. This fact has se-
vere implications on the candidate classification, which is a good justification
for our exponential observation weighting used to promote the most recent mea-
surements. Apparently, the classification accuracy with weighting enabled is by
10-20% higher, depending on the weight base b used.

6 Conclusions

In this paper we have introduced a novel image representation and discrimina-
tive feature selection method for road sign recognition where a large number
of classes are involved. The proposed algorithms have been tested on the real
video sequences, yielding a low classification error rate. It was shown that on
top of a Colour Distance Transform (CDT) representation highly discriminative
sign descriptors can be extracted based on the principle of dissimilarity max-
imisation. With these descriptors available, a conventional classifier is able to
compete with the state-of-the-art sign recognition systems, operating in close to
real time. In comparison to the previous studies, our method seems attractive
in three aspects. First, feature selection is performed directly on the publicly
available template sign images. Second, each template is treated on an individ-
ual basis which is reflected in the number, position, and importance of the local
image regions extracted in order to achieve a desired level of dissimilarity from
the remaining templates. Finally, by using a Colour Distance Transform (CDT)
we have shown that the proposed dissimilarity-based description of signs can
well be extended from model images to the real video frames as the resulting
distance measure is made smoother and thus more resistant to various types of
noise typically affecting the video content.
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Abstract. Reviewing a patient history can be very time consuming,
partly because of the large number of consultation notes. Often, most of
the notes contain little new information. Tools facilitating this and other
tasks could be constructed if we had the ability to automatically detect
the novel notes. We propose the use of measures based on text compres-
sion, as an approximation of Kolmogorov complexity, for classifying note
novelty. We define four compression-based and eight other measures. We
evaluate their ability to predict the presence of previously unseen diag-
nosis codes associated with the notes in patient histories from general
practice. The best measures show promising classification ability, which,
while not enough to serve alone as a clinical tool, might be useful as part
of a system taking more data types into account. The best individual
measure was the normalized asymmetric compression distance between
the concatenated prior notes and the current note.

1 Introduction

Patient histories, as recorded in clinical information systems, contain records,
typically both with structured and free-text components, of encounters between
care provider and patient. Such histories can get very long, putting a great
burden on those who have to review them. This is particularly true in general
practice and for patients with chronic disease. Often, many entries in a history
contain repetitions of already known information or reports of follow-up of es-
tablished treatment of known problems. The ability to automatically pick out
the novel parts of a history could have great utility in the following areas:

1. Improving review of histories by highlighting novel parts or folding non-novel
parts.

2. Summarizing histories.
3. Automatically notifying collaborating personnel, keeping them up-to-date

on important events.

It could also be useful in segmenting or filtering patient histories as pre-processing
for data mining.

To perform optimally, a novelty detector for patient histories would need to
take many types of data into account, including textual notes, diagnosis codes,
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lab results, prescriptions and referrals. In this work, we will nevertheless only use
the textual notes, since we think that the parts of the problem should be studied
separately before it is attacked as a whole. The problem can be formulated as
follows: Given the previous notes in a patient history, classify the current note
as novel or not novel. The obvious problem with this formulation is that novelty
is a subjective criterion, and we need an objective gold-standard for evaluating
our methods. One possibility would be to hire clinicians to read patient histories
and rate the novelty of notes. This would be very costly for a sufficiently large
data set, and there would still be problems with subjectivity, since different
clinicians might have different concepts of novelty. Therefore, in this work we
instead draw our evaluation criterion from the data. The notes in our patient
histories have associated diagnosis codes indicating the reason for encounter,
and we label a note as novel if one of its associated codes is given for the first
time in the history. Our thinking is that a clinician who finds that the patient’s
situation warrants a new diagnostic category must, almost by definition, think
that something novel has occurred. There might be types of novelty not captured
by the evaluation criterion, such as important developments not warranting new
diagnostic categories. If reflected in the textual notes, these might cause spurious
false positives in the evaluation. While imperfect, our evaluation criterion gives
us a basis for comparing different measures.

It may seem strange to take the evaluation criterion from information that is
already available in the patient histories and could be used to trivially obtain a
perfect score. However, our real goal is not to maximize the score but to examine
the performance of different text-based novelty measures. As long as the criterion
is a relatively realistic operationalization of novelty, high-performing text-based
measures could afterwards serve as parts of a novelty detector considering more
types of data and being evaluated according to a different criterion.

We have implemented twelve novelty detectors and evaluated them using the
evaluation criterion introduced above. Four of them make use of string com-
pression to approximate the absolute and conditional Kolmogorov complexity
of notes and concatenations of notes. One is the baseline TF-IDF vector space
method from the related problem of new event detection in new streams. Another
is a support vector machine (SVM) using the eleven other detectors as input.
The remaining six are primitive measures intended to serve as reality checks for
the performance of the others.

Our main contributions are:

1. The formulation and formalization of the problem and evaluation framework.
2. The application of compression-based similarity measures to novelty detec-

tion in text, and in particular our proposal of the normalized asymmetric
compression distance (defined in equation 7), which turned out to be the
best individual performer.

3. The evaluation of the novelty detectors on a general practitioner patient
record with 5346 patient histories and a total of 273991 notes to classify.
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2 Related Work

We now briefly introduce the two main bodies of work our novelty detectors
draw upon.

2.1 Compression-Based Similarity Measures

It is not unreasonable to assume that a document with a higher similarity to
previous documents is less likely to be novel. Therefore, a similarity measure
might be a useful basis for a novelty detector. Since novelty implies the presence
of new information, similarity measures based on joint and separate compress-
ibility [1,2,3,4] are intuitively appealing. The theoretical basis of these measures
lies in algorithmic information theory, where K(x), the Kolmogorov complexity
of the bit string x, is defined as length of the shortest binary program that makes
a fixed universal Turing machine output x. K(x|y), the conditional Kolmogorov
complexity of x given y, is the length of the shortest program that makes the
machine output x when given y as input. The information distance ID between
x and y is the length of the shortest program that makes the machine output
x when given y and vice versa. The following has been shown to hold, up to a
logarithmic, additive term [1]:

ID(x, y) = max{K(x|y), K(y|x)} (1)

The normalized information distance between x and y, defined as

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)} , (2)

has been proven to be a metric and to to be minimal (up to an additive constant)
among a set of admissible distances (where the admissibility criteria include a
density requirement to exclude trivial solutions) [2]. For applications, the non-
computable Kolmogorov complexity can be approximated using a real-world
compressor such as gzip, resulting in the normalized compression distance [4],

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)} , (3)

where C(x) is the compressed length of x, and C(xy) is the compressed length
of the concatenation of x and y. (The formulation of the NCD assumes that the
compressor is symmetric, i.e. that C(xy) = C(yx).) The intuitive interpretation
of the NCD is that two strings are similar if they can be compressed to a greater
degree together than separately.

Successful applications of the NCD and its variations include clustering and
phylogeny reconstruction of biological sequences [4], clustering of languages and
authors represented by textual corpora [4] and clustering, classification and
anomaly detection of time series [3]. The differences between Keogh et al.’s time
series anomaly detection [3] and our work are 1) the type of data, 2) novelty
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being defined with respect to the past history whereas anomaly is defined with
respect to the whole history, 3) the types of measures used, and 4) the finding.
Keogh et al. found that a variation of NCD was usful for anomaly detection. As
described below, we found that the most direct application of the NCD (called
NM-NCD below) was not very useful for novelty detection, that another applica-
tion of the NCD (called NM-MIN-NCD) was better, and that the best individual
measure (NM-NACD) was an asymmetric counterpart to the NCD. The applica-
tions cited above all use symmetric measures. Novelty detection is an inherently
asymmetric problem, since different roles are played by the novel data and the
data it is novel with respect to. Thus, unlike the case with clustering, an asym-
metric measure may be more natural. The same argument could be applied to
anomaly detection. Some early compression-based measures for assessing evolu-
tionary distance between biological sequences [5,6] were asymmetric, but here
we would think that asymmetry was a disadvantage since evolutionary distance
is a symmetric concept (at least unless one sequence is known to be the ancestor
of the other).

2.2 New Event Detection from News Streams

In the field of Information Retrieval, the problem of New Event Detection (NED)
[7,8,9] has much in common with the problem we investigate in this article. In
NED, a stream of news articles is scanned sequentially, and the task is to pick out
those articles that describe an event, for example a peace treaty or a scientific
discovery, for the first time. A baseline approach in NED is to represent the
articles with TF-IDF (term frequency × inverse document frequency)-weighted
vectors and classify an article as describing a new event if the maximum of the
distances from the vector to the preceding vectors is above a given threshold. One
difference between NED and our problem is that we have a separate document
stream for each history and can base the TF-IDF weights on the past documents
in the current history plus all documents in the other histories.

We use a measure based on TF-IDF as a point of comparison for our other
methods and as a feature for our SVM. More sophisticated methods have been
applied to NED, such as detection and separate consideration of different types
of terms [9]. Similar approaches could be taken with patient record data, but we
currently lack the necessary linguistic resources.

3 Materials and Methods

3.1 Data Source

Our data source was a patient record from a general practitioner’s office. The
record of a patient history is structured as a series of encounters, with notes,
diagnosis codes and other associated information. For each patient, we extracted
the series of encounter notes, along with the diagnosis codes associated with each
encounter. We ignored histories with less than 21 encounters. The resulting data



Novelty Detection in Patient Histories 371

Table 1. The ten diagnosis codes with the highest frequency of occurrence (determined
with respect to the total number of code occurrences)

Code Description Frequency

K86 Hypertension uncomplicated 3.0%
L84 Back syndrome without radiating pain 2.4%
T90 Diabetes non-insulin dependent 2.5%
P76 Depressive disorder 2.0%
K78 Atrial fibrillation/flutter 2.0%
L93 Tennis elbow 1.9%
L92 Shoulder syndrome 1.8%
R74 Upper respiratory infection acute 1.5%
R83 Respiratory infection other 1.4%
K74 Ischaemic heart disease with angina 1.3%

set contained 5346 histories, with an average of 71 encounters per history (stddev
59), and an average of 0.79 diagnosis codes per encounter (stddev 0.65). There
were 1004 different codes, and they were mostly drawn from the International
Classification of Primary care (ICPC) [10]. The ten most frequent codes are
shown in table 1. The 100 most frequent codes accounted for 68% of the code
occurrences.

We ignored encounters where the note was blank. Also, since novelty detection
is easier early in a history, we ignored the results from the first 20 encounter notes
in each history. (When we did not ignore them, we got slightly better results than
we report below.) After these exclusions, we had 273991 notes to classify.

3.2 Formalization of Patient History and Classification Task

We represent the history of patient p with the sequence

(np
1, D

p
1), (n

p
2, D

p
2), . . . , (n

p
n, Dp

n),

where np
i is p’s ith encounter note and Dp

i is the set of diagnosis codes associated
with p’s ith encounter. P denotes the set of all patients, and len(p) the number
of encounters in p’s history.

For our evaluation criterion, the classification problem for patient p and note
number k ∈ [1, len(p)] is: given (np

1, D
p
1), (n

p
2, D

p
2), . . . , (n

p
k−1, D

p
k−1) and np

k, pre-
dict whether

Dp
k \

⋃

i∈[1,k)

Dp
i = ∅,

i.e. whether the next encounter has any new diagnosis codes.
Our approach to solving the classification problem is to use a novelty measure

NM, a function from the set of valid (p, k) pairs to R. We classify patient p’s kth
note as novel if NM(p, k) >= θ, where θ is a threshold value we can choose to
achieve a desired trade-off between sensitivity and specificity. Figure 1 shows the
application of a novelty measure to a history.
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Fig. 1. The application of a novelty measure (NM-NACD, defined in equation 8) to every
note in a history. Crosses and boxes represent novel and non-novel notes, respectively.
This was the history with the median ROC AUC score for the NM-NACD, meaning that
it is neither one of the best nor one of the worst showcases of NM-NACD. This patient had
many simple problems such as cuts, sprains and swollen eyes, most of which seemed
to be resolved very quickly. He or she also had a recurring knee problem that evolved
through several diagnosis codes, and a back problem giving rise to the series of non-
novel notes ending at contact 30.

3.3 The Measure Candidates

In this section, we describe four groups of novelty measures: first four compression-
based measures, then the baseline measure from the related field of new event
detection, then an SVM with all the other measures as input and then six naive
measures to serve as a reality check for the others.

Measures Based on Text Compression. The NCD, as defined above, can
be used in several ways to construct a novelty measure. One way, NM-NCD is to
use the NCD between the concatenation of all the previous notes and the current
note:

NM-NCD(p, k) = NCD(concat
i∈[1,k)

(np
i ), n

p
k) (4)

This formulation has the problem that the distances typically will increase as
more notes are added to the concatenation.
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Another way is to take the minimum of the NCDs between the current note
and the previous notes, reasoning that the current note is novel if it is not similar
to any of the previous notes.

NM-MIN-NCD(p, k) = min
i∈[1,k)

NCD(np
k, np

i ) (5)

The ID, NID and NCD are symmetric distances, since the program must com-
pute x from y and y from x. Since measuring the novelty of a note with respect
to a set of other notes is not an inherently symmetric operation, it is relevant to
consider asymmetric variants of the distances. The asymmetric counterparts to
ID(x, y) are of course K(x|y) and K(y|x). We can normalize K(y|x) by dividing
by K(y), obtaining an asymmetric distance that is 0 when x contains all the
information about y and 1 when x contains none of the information about y. We
call this distance the normalized, asymmetric information distance, the NAID:

NAID(x, y) =
K(y|x)
K(y)

(6)

Note that the NAID, as opposed to the NID, doesn’t take into account the
amount of information x contains unrelated to y. This might be beneficial if we
think that unrelated information per definition is irrelevant for the question of
y’s novelty. The NAID, unlike the NID, is not a metric, but our application does
not require that property.

In analogy with the way [2] approximated the NID by the NCD, we approxi-
mate the NAID by the NACD:

NACD(x, y) =
C(xy) − C(x)

C(y)
(7)

We use the NACD as a novelty measure by applying it from the concatenation
of the previous notes to the current note:

NM-NACD(p, k) = NACD(concat
i∈[1,k)

(np
i ), n

p
k) (8)

As opposed to the NCD, the NACD will not in general increase as more notes
are added, because the information in the past notes that do not contribute to
better compression of the np

k is not taken into account.
We can also take the minimum of the NACD from each of the previous notes

to the current note:

NM-MIN-NACD(p, k) = min
i∈[1,k)

NACD(np
k, np

i ) (9)

We used gzip as the compressor C in our experiments, at the maximum
compression level (9).

We have also tested un-normalized versions of the compression-based novelty
measures. They always performed worse than their normalized counterparts. For
brevity, we omit them from the results.
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Vector Space Measures. We transplanted the incremental TF-IDF vector
space scheme, considered a baseline in New Event Detection, to our problem. The
scheme can be formulated as using a function tf(w, n), which gives the frequency
with which the word w occurs in the document d, and a function df(w, N), which
gives the fraction of the notes in the set of notes N that contain the word w.
For a prediction problem (p, k), let Np

k = {np′

i : p′ 
= p ∨ i ∈ [1, k)}, (the set of
notes available in this and other histories), and let W p

k = {w : df(w, Np
k ) >= θ}

(the set of words under consideration, excluding very rare words). Following [8],
we use θ = 2. Represent a note n with a vector of weights, one for each word w,
with the following (the tf-idf terms):

weightpk(w, n) = tf(w, n)
1

df(w, Np
k )

. (10)

Define similarity between two notes na and na with the following (the cosine
distance):

simp
k(na, nb) =

∑
w∈W p

k
weightpk(w, na)weightpk(w, nb)

√∑
w∈W p

k
|weightpk(w, na)weightp

k(w, nb)|2
(11)

Then, take the following as a novelty measure:

NM-TFIDF(p, k) = 1− max
i∈[1,k)

{sim(np
k, np

i )} (12)

In calculating df and tf the pre-processing went as follows: First, all non-
alphanumeric characters were replaced by white-space. Then, the words were
found by splitting the string on white-space. Spelled-out numbers were replaced
by numbers, stop words were removed, and naive, dictionary-based stemming
was applied.

Combined Measure. We combined the eleven other measures mentioned above
as features to a support vector machine (SVM), and used the output of the SVM
as the novelty measure NM-SVM. We used libsvm’s [11] implementation of C-class
SVM with default parameters (3rd degree radial basis kernel, C = 1, γ = 1/11).
The negative examples were sampled down to the number of positive examples.

Trivial Measures. We also implemented six trivial novelty measures, in order
to check whether the other measures were doing something more than this. The
measures were NM-RANK (the position of the note relative to the beginning of the
history), NM-DAY(the day of the note relative the the beginning of the history,
NM-DAYGAP (the number of days since the previous note), NM-#CHARS (the number
of characters in the note), NM-#NW (the number of previously unseen words in
the note, and NM-C(n) (the compressed size of the note).

3.4 Experimental Setup

As formalized in subsection 3.2, we extracted patient histories from the data
source and calculated the value of each novelty measure for each note in each
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history. For the SVM, we did 5-fold cross-validation and used the SVM output on
the testing folds as novelty predictions. To check the contribution of the features,
we also did 13 other SVM runs, one with all features and 12 each with a different
feature left out. Here we only did 2-fold cross-validation.

By setting a threshold for a measure’s novelty values, one can obtain a novelty
detector with a desired sensitivity/specificity trade-off. The possible trade-offs
can be visualized with receiver operating characteristic (ROC) curves. We used
the R package ROCR [12] to calculate the ROC) for our measures, and the areas
under the curves (AUC). We use the AUCs to score the goodness of the measures.
We used DeLong’s placement value method [13,14] to calculate p-values for the
differences between the AUCs.

4 Results

Figure 2 shows the ROC curves for the measures. Tables 2 and 3 show the AUC
scores for the non-trivial and the trivial measures, respectively. NM-SVM’s AUC
is larger than each of the other AUCs with p-values < 0.0001. NM-NACD’s AUC
is larger than each of the other AUCs except NM-SVM’s with p-values < 0.0001.
Leaving out single features did not improve performance of the SVM, beyond
perturbations in the fourth decimal of the AUC.

Table 2. AUCs for the non-trivial novelty measures. * means that the measure was
inverted, since it gave AUC < 0.5.

NM-NCD* NM-MIN-NCD NM-NACD NM-MIN-NACD NM-TFIDF NM-SVM

0.600 0.780 0.826 0.798 0.795 0.850

Table 3. AUCs for the trivial novelty measures. * means that the measure was inverted,
since it gave AUC < 0.5.

NM-RANK* NM-DAY NM-DAYGAP NM-#CHARS NM-#NW NM-C(n)

0.575 0.576 0.656 0.0.727 0.722 0.735

5 Discussion

We will now attempt to make sense of the results. It is no surprise that the SVM
had the best performance since it could combine the information represented in
all the other measures. The fact that the asymmetric compression-based mea-
sures perform better than their symmetric counterparts seems to confirm the idea
that motivated them in the methods section, namely that it doesn’t matter for
the novelty of the new note how much or little unrelated information is present
in the past notes. What matters is the proportion of new information in the new
note itself. NM-NCD’s worse-than-random performance is probably due to the fact
that the complexity of the concatenated previous notes increases as the history
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Fig. 2. ROC curves for the novelty measures. (The curves for the trivial measures are
all shown with the same line type).

progresses, while the frequency of new diagnosis codes decreases (since more and
more codes have already been used). Why NM-NACD outperformed NM-MIN-NACD
is less certain. Perhaps the minimum function made it more susceptible to noise.
Perhaps compressing the new note together with all the previous notes at once
eliminates more of the non-novel content in the new note, leaving a more accu-
rate estimate of the novelty. Except for the NM-NCD, all the non-trivial measures
performed better than all the trivial ones, indicating that they did more than
just pick up on trivial features.

In comparing the performance of NM-NACD to the transplanted, TF-IDF-based
method, we must remember that our implementation of NM-TFIDF was very
primitive. If better natural language processing tools, such as taggers for word
categories, were available, NM-TFIDF might do better. Following the example
of [9], we could use separate TF-IDF vectors for different categories of clinical
terms. Or, following [7], we could first classify the notes into broad categories,
and then specialize the document representation for each category.
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Another question is how good the best measure, NM-SVM, is. Looking at the
ROC curves in figure 2, it is clear that we cannot find a trade-off that allows us
to detect most of the novel notes without incurring a large rate of false alarms.
Performance must be improved before a clinically useful tool can be created.
One avenue of possible improvement is to move beyond the textual notes and
take other data types into account. For example, a novelty detector based on
the textual notes and the diagnosis codes could classify as novel all encounters
with a new diagnosis code and/or text-based novelty above a given threshold.

We have reached a point where a new evaluation criterion is needed. The
diagnosis-based criterion gave us a massive data set for comparing text-based
measures, but if the novelty detector incorporates the diagnosis codes, the cri-
terion becomes invalid. Furthermore, the diagnosis-based criterion is only an
imperfect reflection of our ultimate criterion: novelty in the eyes of clinicians. A
natural next step is therefore to have clinicians manually rate the novelty of each
note in a sufficiently large set of patient histories. With the long and complex
histories typical of general practice, this will not be a small undertaking.

6 Conclusion

We have defined and evaluated several text-based measures for detecting novel
encounter notes in patient histories. The best single measure was NM-NACD, the
asymmetric normalized compression distance, proposed by us in this article. It
was only slightly outperformed by an SVM using all single measures as features.
This lets us conclude that compression-based measures have utility for detecting
novelty in text, and that asymmetry, while disadvantageous in other situations,
may be an advantage for the asymmetric comparisons needed for novelty detec-
tion. The text-based measures did not perform well enough to be clinically useful
on their own, but would likely by useful as components in a system detecting
novelty from a wider range of data types.
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4. Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Transactions of
Information Theory 51(4), 1523–1545 (2005)

5. Grumbach, S., Tahi, F.: A new challenge for compression algorithms. Information
Processing and Management 30, 875–866 (1994)
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Feelders, Ad 48
Fernández, Antonio 59
Fraser, Karl 308

Gabriel, Hans-Henning 70
Gaglio, Salvatore 332
Giammanco, Giovanni M. 332
Gionis, Aristides 195

Hammer, Barbara 93
Hasenfuss, Alexander 93
Hinneburg, Alexander 70
Hollmén, Jaakko 1
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Ross, Gordon 81
Røst, Thomas Brox 367
Ruta, Andrzej 355

Salmerón, Antonio 59
Sanchis, Araceli 207
Saul, Lawrence K. 13
Sha, Fei 13
Siciliano, Roberta 163, 174
Stegeman, Luite 274

Tasoulis, Dimitris K. 81
Tikka, Jarkko 1
Tschumitschew, Katharina 263



380 Author Index

Tucker, Allan 184

Tutore, Valerio A. 163
Tzikas, Dimitris 37

Ukkonen, Antti 240

Urso, Alfonso M. 332

Valle, Carlos 130
van Straalen, Robert 48
Vychodil, Vilem 140

Wang, Zidong 308

Yardimci, Ahmet 344


	Title Page
	Preface
	Conference Organization
	Table of Contents
	Compact and Understandable Descriptions of Mixtures of Bernoulli Distributions
	Introduction
	DNA Copy Number Amplification Database
	Mixture Models of DNA Copy Number Amplifications
	Compact Description of the Mixture Models
	Modes of the Component Distributions
	Hypothetical Mean Organism
	Maximal Frequent Itemsets from Clustered Data

	Experiments
	Characterization of the Patterns

	Summary and Conclusions
	References

	Multiplicative Updates for ${L_1}$–Regularized Linear and Logistic Regression
	Introduction
	Background in NQP
	Multiplicative Updates
	Convex Duality

	L1–Regularized Linear Regression
	Primal Formulation as NQP
	Dual Formulation as BQP
	Experimental Results

	L1–Regularized Logistic Regression
	Discussion
	References

	Learning to Align: A Statistical Approach
	Introduction
	The ${\emph{Z}}$ -Score
	Fast and Exact Computation of the ${\emph{Z}}$-Score
	Inverse Parametric Sequence Alignment Problem
	Experimental Results
	Conclusions
	References

	Transductive Reliability Estimation for Kernel Based Classifiers
	Introduction
	Transduction Reliability Estimations
	Kernel-Based Methods
	Support Vector Machine
	Relevance Vector Machine
	Incremental Relevance Vector Machine

	Evaluation of Transductive Reliability Estimations
	Diagnosis of Coronary Artery Disease
	Conclusions
	References

	Parameter Learning for Bayesian Networks with Strict Qualitative Influences
	Introduction
	Preliminaries
	Parameter Learning with Qualitative Influences
	Learning with Strict Qualitative Influences
	Experiments
	Artificial Data
	Real Data

	Conclusions
	References

	Tree Augmented Naive Bayes for Regression Using Mixtures of Truncated Exponentials:Application to Higher Education Management
	Introduction
	Bayesian Networks and Regression
	The MTE Model
	Constructing a TAN Using MTEs
	Application to Prediction in Higher Education Management
	Further Experimental Evaluation
	Conclusions
	References

	DENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation
	Introduction
	DENCLUE 1.0 Framework for Clustering
	DENCLUE2.0
	Fast Hill Climbing
	Reduction to Expectation Maximization
	Sampling Based Acceleration

	Experimental Evaluation
	References

	Visualising the Cluster Structure of Data Streams
	Introduction
	Visualising Clusters in Static Data
	Stream Clustering
	The Micro-clustering Framework
	Stream Cluster Visualisation

	Experimental Results
	Spawning Clusters
	Disappearing Clusters
	The Forest CoverType Data

	Concluding Remarks
	References

	Relational Topographic Maps
	Introduction
	Topographic Maps
	Relational Data
	Median Clustering
	Training Algorithm
	Mapping, Quantization Error, Convergence
	Kernels
	Complexity

	Experiments
	Artificial Euclidean Benchmark
	Classification of Protein Families
	Topographic Mapping of Protein Families
	Chromosome Images

	Discussion
	References

	Incremental Learning with Multiple Classifier Systems Using Correction Filters for Classification
	Introduction
	Incremental Learning with Multiple Classifier Systems
	Basic Method
	Correction Filters for Classification

	Experiments and Results
	Conclusion
	References

	Combining Bagging and Random Subspaces to Create Better Ensembles
	Introduction
	Overview of Randomization Methods for Constructing Ensembles of Classifiers
	Bagging
	The Random Subspace Method
	Random Forests

	Combining Bagging and Random Subspace Method
	Implementation and Experimental Setup
	Results and Discussion
	Conclusion and Further Work
	References

	Two Bagging Algorithms with Coupled Learners to Encourage Diversity*
	Introduction
	Diversity and Negative Correlation Learning
	Bootstrapping Negative Correlation
	Using Out-of-Bag Residuals to Compute Diversity
	Experimental Results
	Conclusions and Final Remarks
	References

	Relational Algebra for Ranked Tables with Similarities: Properties and Implementation*
	Introduction
	Motivation and Outline of the Paper
	Related Approaches
	Preliminaries

	Relational Algebra and Implementation of Relational Model over Domains with Similarities
	Ranked Tables over Domains with Similarities
	Relational Algebra
	Implementation Issues

	Future Research
	References

	A New Way to Aggregate Preferences:Application to Eurovision Song Contests
	Introduction
	Background
	Problem Setting and Contribution
	Experimentation
	Conclusion
	References

	Conditional Classification Trees Using Instrumental Variables
	Introduction
	Nowdays Data Analysis
	Binary Segmentation
	This Paper Genesis

	Multiple Discriminant Trees
	Notation and Definition
	The Multiple Method
	Within-Block Latent Compromises
	Across-Block Latent Compromise
	Multiple Factorial Split
	The Computational Steps

	Partial Predictability Trees
	Notation and Definition
	The Partial Method
	The Splitting Criterion

	Applications
	Partial Predictability Trees: German Credit Survey
	Multiple Discriminant Trees: Local Transport Survey

	Concluding Remarks
	References

	Robust Tree-Based Incremental Imputation Method for Data Fusion
	Introduction
	TheFramework
	The Imputation Methodology
	Robust Incremental Imputation Algorithm for Data Fusion
	The Main Step of RTII Algorithm

	Simulation Study
	Concluding Remarks
	References

	Making Time: Pseudo Time-Series for the Temporal Analysis of Cross Section Data
	Introduction
	Methods
	Learning Pseudo Time-Series
	Bayesian Network Models
	Pseudo Temporal Model Construction

	Experiments and Results
	B-Cell Lymphoma
	Glaucoma and Visual Field Deterioration

	Conclusions and Future Work
	References

	Recurrent Predictive Models for Sequence Segmentation
	Introduction
	Related Work
	Problem Definition
	Algorithms
	Dynamic Programming
	Clustering Algorithms
	Iterative Improvement Algorithm
	Putting Everything Together

	Experimental Data
	Recurring Models in Environmental Data
	The Haplotype Prediction Task

	Conclusions
	References

	Sequence Classification Using Statistical Pattern Recognition
	Introduction
	Related Work on Sequence Classification
	Our Approach
	Pattern Extraction
	Building a $\textit{Trie}$
	Evaluating Dependencies

	Classification
	$\textit{Trie Sub-comparison}$
	The Comparing Algorithm

	Experimental Setups and Results
	Conclusions and Future Work
	References

	Subrule Analysis and the Frequency-Confidence Diagram
	Introduction
	Problems with Rule Quality Measures and Subrules
	Examples on Real World Datasets
	Conclusion
	References

	A Partial Correlation-Based Algorithm for Causal Structure Discovery with Continuous Variables
	Introduction
	Background and Problem Statement
	Total Conditioning for Causal Discovery
	Experimental Results
	Conclusion
	References

	Visualizing Sets of Partial Rankings
	Introduction
	Representations of Partial Rankings
	Graph Representation
	Hypersphere Representation

	A Generative Model for Partial Rankings
	The Quality of a Visualization
	Experiments
	Artificial Data
	Voting, Clickstream and Preference Data

	Conclusions
	References

	A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization
	Introduction
	The Torgerson MDS Algorithm
	A Semi-supervised MDS Algorithm
	Experimental Results
	Conclusions and Future Research Trends
	References

	Landscape Multidimensional Scaling
	Introduction
	MDS Representation on a Landscape
	Initialisation of LMDS
	Adding Mountains to the Landscape
	Examples
	Conclusions
	References

	A Support Vector Machine Approach to Dutch Part-of-Speech Tagging
	Introduction
	Spoken Dutch Corpus (CGN)

	Design of the SVM Tagger
	Input Coding
	Training and Test Data
	Decomposing the SVM Part-of-Speech Tagger
	Kernel Optimization

	Test Results
	Improving Unknown Word Performance

	Detailed Performance Evaluation
	Conclusions
	References

	Towards Adaptive Web Mining: Histograms and Contexts in Text Data Clustering
	Introduction
	Quality Measures for the Contextual Clustering
	Paper Organization

	Histograms in Vector Spaces
	Distributions of the Function Pondering the Terms
	Significance of a Term in a Context
	Determining the Degree of Membership of a Document to a Context
	Incremental Adaptation of Contexts

	Experimental Results
	Histogram-Based Reclassification Measures
	Contextual Clustering Reclassification Quality
	Scalability Issues

	Concluding Remarks
	References

	Does SVM Really Scale Up to Large Bag of Words Feature Spaces?
	Introduction
	Background on Support Vector Machines and Text Classification
	Methodology
	Experimental Results and Discussion
	Related Work
	Conclusion
	References

	Noise Filtering and Microarray Image Reconstruction Via Chained Fouriers
	Introduction
	Background
	A New Analysis Technique
	Experiments
	Conclusions
	References

	Motif Discovery Using Multi-Objective Genetic Algorithm in Biosequences
	Introduction
	Multi-Objective Optimization
	The MOGAMOD Algorithm
	Structure of the Individuals
	Objectives and Selection
	Genetic Operators

	Experimental Results
	Discussion and Conclusions
	References

	Soft Topographic Map for Clustering and Classification of Bacteria
	Introduction
	Related Work
	Genetic Sequence Similarity
	Sequence Alignment
	Evolutionary Distance

	Soft Topographic Map Algorithm
	Experimental Analysis
	Bacteria Dataset
	Experimental Results

	Conclusions
	References

	Fuzzy Logic Based Gait Classification for Hemiplegic Patients
	Introduction
	Methods
	Measurement System
	Experimental Design

	Classification of Hemiplegic Gate with Fuzzy Logic
	Results and Discussion
	References

	Traffic Sign Recognition Using Discriminative Local Features
	Introduction
	Sign Detection and Tracking
	Image Representation and Feature Selection
	Colour Discretisation
	Discriminative Local Regions
	Region Selection Algorithm

	Temporal Classifier Design
	Experiments
	Conclusions
	References

	Novelty Detection in Patient Histories:Experiments with Measures Based on Text Compression
	Introduction
	Related Work
	Compression-Based Similarity Measures
	New Event Detection from News Streams

	Materials and Methods
	Data Source
	Formalization of Patient History and Classification Task
	The Measure Candidates
	Experimental Setup

	Results
	Discussion
	Conclusion
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




